
Theory of Low-dimensional Thermoelectrics
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Fabrication of Nanowires by electrodeposition
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Low dimensionality should improve the properties of thermoelectric materials

Why?
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Well ordered, >90% Nucleation

Bi2Te3 wires fill the pores completely  wetting effect

CoSb3

Rattler type StructureWhy?

 Part of the Skutterudite 

(CoAs3) family

ZT  1.47 at 573K
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CoSb3: Post-annealed Morphology

100 nm

•Co layer wet alumina walls while Sb layer do not.

•There is also a reduction in volume after heating.

•All that gives a very interesting periodic constriction 

along the length of the wire
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CoSb3: Electrodeposition sequence
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Conclusions:

Nanowire arrays of thermoelectric materials like Bi2Te3, Bi2-xSbxTe3 

Bi2Te3-xSex, Bi1-xSbx and CoSb3 have been successfully prepared.

Because of the “wetting/non-wetting” effects between the porous alumina 

and the material inside the pore different and technologically interesting 

nanostructures can be found!!!!
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Bi1-xSbx

Why? Structure

Bi or Sb
Solid solution

R3mH

 Solid solution

 Best low temperature 

thermoelectric ZT ~ 0.88 at 12% Sb 

and 80K

 Calculations by Dresselhaus et al.

suggest a ZT ~ 1.25-1.5, diameters of 

~40 nm, x ~0.13

200 nm

•The wire diameter is smaller than the pore diameter

•The wire grows concentrically in the pore but does not

wet the alumina walls

FE-SEM 40 nm Bi1-xSbx nanowire array
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•The pores can be filled by doing the process more slowly 

but non wetting effects are still observed
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Providing a sustainable supply of energy to the world’s population will become a major societal

problem for the 21st century. Thermoelectric materials, whose combination of thermal, electrical, and

semiconducting properties, allows them to convert waste heat into electricity, are expected to play an

increasingly important role in meeting the energy challenge of the future. Recent work on the theory

of thermoelectric devices has led to the expectation that their performance could be enhanced if the

diameter of the wires could be reduced to a point where quantum confinement effects increase charge-

carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. The

predicted net effect of reducing diameters to the order of tens of nanometers would be to increase

efficiency or ZT index by a factor of 3.

Our work in the thermoelectricity has been recently funded by the European ERC

program “IDEAS” under ERC contract 240497, granted to Dr. Marisol Martin at IMM-CSIC,

and also by a bilateral collaboration (NANO-THERMA) within the Spanish team and a NIMS

group in Japan.

Its main objective is to investigate and optimize nanostructures influencing ZT in order to achieve a

power conversion efficiency >20%. For that, nanowire arrays of state of art n and p-type

semiconductor materials will be prepared by cost-effective mass-production electrochemical methods

and fabricate devices with a ZT >2 for applications in energy scavenging and as cooler/heating

devices. Three lines of research are followed:

a) determination of the best materials for each temperature range (n and p type) optimizing

composition, microstructure, shapes (core/shell nanowires, surface texture, heterostructures),

interfaces and orientations,

b) advanced characterization, device development and modeling will be used iteratively during

nanostructures and materials optimization, and

c) nano-engineering less conventional thermoelectric like “cage compounds” by electrodeposition

methods.
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50 nm Bi2Te2.7 Se0.2wire array

Thin film Peltier element.
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