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Abstract

Materials with thermopiezoelastic properties have both theoretical and practical
significance in solid-state physics and materials science. Thermopiezoelastic media
exhibit coupling among the thermal, electric and elastic fields. Strain, electric
displacement and entropy can be written in terms of stress, electric field and temperature.
Investigation is concerned with the analysis of nonlinear thermopiezoelasticity using
thermodynamic principles. Strain, electric displacement and entropy are expanded into
Taylor series. Zeroth to eighth rank tensors are derived for describing material constants.
Relationship of material constants of strain, electric displacement and entropy are
obtained in thermopiezoelasticity. Due to intrinsic coupling behavior, thermopiezoelastic
materials are widely used as sensors and actuators in sensing, actuation, and control of
smart structures. Mathematical expressions of material constants may be useful for future
investigation of the mechanics and physics of nonlinear thermopiezoelasticity.

Introduction

Mechanical, electrical, and thermal fields are coupled in thermopiezoelasticity. Nonlinear
analysis of thermopiezoelasticity has been made for determining their material constants.
In the previous studies, Bao and co-workers (1998) introduced static, dynamic, and
control characteristics of a nonlinear piezoelectric laminated beam subjected to
mechanical, temperature, and electric excitations. Wang et al. (1999) studied the
nonlinear electromechanical behavior piezoelectric ceramic in a wide electric field and
frequency range. Zhou and Tzou (2000) developed nonlinear electromechanics and active
control of piezoelectric laminated circular spherical shallow shells. Hall (2001) gave an
overview of experimental evidence and understanding of nonlinear dielectric, elastic and
piezoelectric relationships in piezoelectric ceramics.

Furthermore, Altay and Dokmeci (2002) described a nonlinear rod theory for high-
frequency vibrations of thermopiezoelectric materials. Warkusz and Linek (2003)
analyzed material constants from zeroth to sixth rank tensors in nonlinear mechanical,
electrical and thermal phenomena in piezoelectric crystals.Wagner (2004) presented
nonlinear longitudinal vibrations of non-slender piezoceramic rods. Mukherjee and
Chaudhuri (2005) deduced a generalized formulation for nonlinear dynamic analysis of
piezoelectric structures. Blackburn and Cain (2006) examined nonlinear piezoelectric
resonance.



Among some recent works, Balakina (2007) deduced analytical expressions for the pyro-
and piezoelectric coefficients of nonlinear optical polymer electrets. Grigoriev et al.
(2008) discussed nonlinear piezoelectricity in epitaxial ferroelectrics at high electric
fields. Xia and Shen (2009) proposed an analysis with the nonlinear vibration and
dynamic response of a shear deformable functionally graded material (FGM) plate with
surface-bonded piezoelectric fiber reinforced composite actuators (PFRC) in thermal
environments. Yiqgi and Yiming (2010) considered nonlinear dynamic response and
active vibration control of the piezoelectric functionally graded plate.

Present analysis deals with thermodynamic Gibbs function. Strain, electric displacement
and entropy are produced simultaneously by stress, electric field and temperature change.

In order to derive material constants from zeroth to eighth rank tensors, thermodynamic
Gibbs function is expressed in Taylor series up to fourth order differentiation.

Thermopiezoelasticity and thermodynamics

In thermopiezoelasticity, thermodynamics Gibbs function G (or the Gibbs potential) can
be written as

G=U-¢.0,,-E D, -TS (1)
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In equation (1), U, T and S are internal energy, temperature change and entropy,
respectively. Subscripts indices i, j,mare ranging 1 to 3. It is noted that all other

subscripts indices denoting in other equations range from 1 to 3 unless otherwise

specified. Strain, stress, electric field and electric displacement are denoted by &;, o;;,

E, and D, . Following Einstein's summation convention, the summation sign Z Is
omitted. For example, its detail can be found in Weber, Balashova and Kizhaev (2000).

Differential form of Gibbs function is expressed as

dG =dU - ¢,do;; —0,,d¢g;; — E,dD, -D,dE, —SdT-TdS (2)

As far as the first and second law of thermodynamics are concerned, differential form of
internal energy is represented by

dU = o, dg,, + E,dD, +TdS 3)

It follows from equations (2) and (3) that
dG =-¢,,do;; -D,dE,, -SdT . (4)

Strain, electric displacement and entropy can be written in the following forms



g = f (0. E,.T) (5)
D, = f(oy,E,,T) (6)
S=f(o4E,T) (7
Further, thermodynamics Gibbs function can be written as
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In equation (8), indices in the lower part of vertical line on the partial derivatives indicate
the variable that must be held constant during differentiation.

Also, equations (4) and (8) yield
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Material constants are obtained by the thermodynamic Gibbs function. Strain, electric
displacement and entropy are expanded into Taylor series.

Nonlinear equations in thermopiezoelasticity

Up to third order differentiation, Strain, electric displacement and entropy can be
expressed in Taylor Series as follows:
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Material constants obtained from straing;
Taking equation (9), expressions of material constants can be obtained as

Second order elasticity constant (fourth rank tensor)
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In equation (15a) and all other equations of material constants, superscript indices are

constant. It should be noted that superscripts indices are not taken as powers.

Second order piezoelectric constant (third rank tensor)
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Second order piezo-calorific constant (second rank tensor)
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Fourth order elasticity constant (eighth rank tensor)
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Fourth order piezoelectric constant (seventh rank tensor)
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Fourth order piezo-calorific constant (sixth rank tensor)
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Third order electrostriction constant (fourth rank tensor)
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Third order electro-thermo-elastic constant (third rank tensor)
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Fourth order electrostriction constant (sixth rank tensor)
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Fourth order electro-thermo-elastic constant (fifth rank tensor)
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Third order thermal expansion constant (second rank tensor)
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Fourth order thermal expansion constant (fourth rank tensor)
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Material constants obtained from electric displacementD,

Considering equation (10), the material constants can be derived as

Second order piezoelectric constant (third rank tensor)
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Second order permittivity constant (second rank tensor)
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Second order electric heat constant (first rank tensor)
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Third order piezoelectric constant (fifth rank tensor)
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Third order electrostriction constant (fourth rank tensor)
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Third order electro-thermo-elastic constant (third rank tensor)
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Fourth order electrostriction constant (sixth rank tensor)
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Fourth order electro-thermo-elastic constant (fifth rank tensor)
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Third order electric heat constant (second rank tensor)
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Fourth order electro-elastic constant (fifth rank tensor)
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Fourth order electro-thermo-electro-elastic constant (fourth rank tensor)
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Third order pyroelectric constant (first rank tensor)

I
Em\_ﬂ

pgnm

Em% = kklpqm

T

=_ =T
pgtnm
00, 0E.OE,0E ;|

T

T

— =0
00,00, 0E,0E, | "

(16f)

(16g)

(16h)

(16i)

(16))

(16k)

(16l)

(16m)



_ @[ 6 &6 | _ .
or*\ ¢E,) oT?eE, "

Fourth order thermo-electro-elastic constant (third rank tensor)
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Material constants obtained from entropy S

Using equation (11), the material constants can be expressed as

Second order piezo-calorific constant (second rank tensor)
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Second order thermal capacity constant (zeroth rank tensor)
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Third order piezo-calorific constant (fourth rank tensor)

_ E
= Qpg
E

s | & (_@j__ o°G
0T ) 60,00,0T

ﬁohﬁamLJ 00,00,

Third order electro-thermo-elastic constant (third rank tensor)
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Third order thermal expansion constant (second rank tensor)
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Fourth order piezo-calorific constant (sixth rank tensor)
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Third order pyroelectric constant (first rank tensor)
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Fourth order electro-thermo-electro-elastic constant (fourth rank tensor)
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Relationship of thermopiezoelastic material constants

Considering equations (15a) to (170), the material constants can be further written as

Second order piezoelectric constant (third rank tensor)
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Fourth order electro-thermo-electro-elastic constant (fourth rank tensor)
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By using equations (15a) to (170) into equations (12) to (14), this results nonlinear
thermopiezoelastic equations
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Nonlinearity and linearity of thermopiezoelasticity

It is convenient to write nonlinear constitutive equations (19) to (21) in matrix form as
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In equation (22), A, B, Care basic effects, and D, E, F are conjugate effects,

respectively. The basic and conjugate effects are given by
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In absence of higher order material constants (higher rank tensors), equations (19) to (21)
reduce to

& =Spq o +A5,E, + o T (24)
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S= akE,O'k, + p E, + ETFT (26)

It is obvious that equations (24) to (26) are linear constitutive equations of
thermopiezoelasticity.

Conclusion

Nonlinear thermopiezoelasticity problem has been studied. Employing thermodynamic
Gibbs function and Taylor series, material constants are derived from zeroth to eighth
rank tensors. If higher order material constants (higher rank tensors) are neglected in
nonlinear equations, linear equations are obtained. Nonlinear and linear equations of
thermopiezoelasticity constitute system of symmetry with basic effects and conjugate
effects. All the derivations obtained in this analysis are convenient to be used in solving
complicated problems in thermopiezoelastic materials. Further investigation may be
carried out considering the work of Fumi (1952), Fieshi and Fumi (1953) and Abrahams
(1994).
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