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Motivations



Accelerated expansion of the Universe 
- dark energy

- modified gravity

Most of the models involve one or more scalar fields, which experience self-interactions 
and may also interact with matter.

“Fifth force” that has not been seen in local gravity experiments !

- the scalar field does not interact with baryonic matter components

- there is a mechanism to suppress the fifth force in local environments

“Screening” mechanisms associated with non-linearities of the system. 

Khoury (1011.5909)



Two approaches:

- Focus on the cosmological behavior and on low-order (linear) perturbation theory.

One may study specific models or build general frameworks (EFT) that apply to 
a large class of theories.

- Look for explicit models that make sense from local to cosmological scales.

One needs to specify the model and its nonlinear screening mechanism. Combining 
Solar System and cosmological tests can provide strong constraints on the model.

Gravity acts on all scales: it would be nice to have unified scenarios 
(or at least to see how one can build unified models).

The cosmological regime may be decoupled from the small-scale regime.

Gubitosi, Piazza & Vernizzi (JCAP 032, 2013 )



Deviations from Newton’s law are parametrized by

�N = �GNM

r
(1 + 2�2e�r/�)

For long-range forces with large    , the tightest constraint 
on the coupling    comes from the Cassini probe 
measuring the Shapiro effect (time delay):

�2  4⇥ 10�5

�
�

Bertotti et al. (Nature 425, 374, 2003)



Violation of the equivalence principle

A  B

C

⌘BC ⌘
����
aC � aB

aC + aB

����

⌘
Moon�Earth

 10�13

This experiment also constrains the time variation of 
the local Newton’s constant:

����
d lnGN

dt

���� < 10�12 yr�1

It also constrains the anomalous perihelion 
of the Moon: |�✓| < 2⇥ 10�11

Williams et al. (PRL 93, 261101, 2004)

Williams et al. (Class. Quant. Grav. 29, 
184004, 2012)

Will (Liv. Rev. Relat. 17, 4, 2014)
Lunar Laser Ranging 

experiment



Scalar-tensor theories



Coupling matter -- scalar field through the 
Jordan-metric conformal rescaling

The relationship between these two metrics is set by additional degrees of freedom,
such as a scalar field: 

A simple way to modify GR is to introduce 2 metrics: 

- the first metric enters the Einstein-Hilbert action (gravitational part)
- the second metric enters the matter action (dynamical part) 

g̃µ⌫
gµ⌫

gµ⌫ = C(', X)g̃µ⌫ +D(', X)@µ'@⌫' X = �1

2
@µ'@µ'

S =

Z
d

4
x

p
�g̃

M̃

2
Pl

2
R̃+ Sm( (i)

m , gµ⌫) + ...

Simple case of a conformal coupling:

S =

Z
d

4
x

p
�g̃

"
M̃

2
Pl

2
R̃+ L̃'(')

#
+ Sm( (i)

m , gµ⌫) gµ⌫ = A2(') g̃µ⌫

I-  DEFINITIONS

� ⌘ M̃Pl
d lnA

d'

Bekenstein (1993)



II-  GENERAL FEATURES

ds2 = �a2(1 + 2�)d⌧2 + a2(1� 2 )dx2 gµ⌫ = A2g̃µ⌫

� =  ̃N +
�A

A
,  =  ̃N � �A

A

r2 ̃N = 4⇡A2('̄(t))G̃N�⇢mNewton’s constant becomes time dependent:

The gravitational potentials seen by matter receive an additional contribution:

If A, hence GN change too much with time, this can modify BBN and orbits of planets 
and stars (binary pulsars and Lunar Ranging exp. testing Equiv. princ.) 

����
�A

A

����  0.1 since BBN, therefore               in these models. A ' 1

-

- Screening: we wish to suppress the gradients of the scalar field

� 6=  
�+ 

2
6= �

dynamical and lensing 
masses are different



Screening mechanisms



L = �Z('0)

2
(@�')2 � m2('0)

2
(�')2 � �('0)

�'

MPl
�⇢m

Theories with a single nearly massless scalar field on large scales, with second-order 
equations of motion.

Screening mechanisms may be classified in 3 categories:

Write the Lagrangian of the scalar fluctuations up to quadratic order as:

Vainshtein /
K-mouflage Chameleon

Damour-Polyakov

Khoury (1011.5909)

Brax & PV (PRD 90, 
023507, 2014)

We can suppress the gradients of the scalar field (in dense environments) by:

- decreasing the coupling to matter

- increasing the mass of the scalar field

- increasing the inertia of the scalar field 
(prefactor of the kinetic term)

no fifth force

the field is frozen

These 3 mechanisms give rise to different behaviors.



the condition for screening,                ,  
reads as a condition on the 
value of Newton’s potential  

�'

MPl
= � �('0)�⇢m

M2
Pl

�
m2('0) +

k2

a2

�

 =


1 +

2�2('0)

1 +m2('0)a2/k2

�
 N

L = �Z('0)

2
(@�')2 � m2('0)

2
(�')2 � �('0)

�'

MPl
�⇢m

Chameleon and Damour-Polyakov

Z(') = 1
linear order  +  quasi-static approximation

GR is recovered on large (linear) scales, 
outside the Compton radius

Gravity is amplified on smaller scales by 

1 + 2�2

When the linear approximation breaks down: screening

Small-scale linear regime: �'/MPl ' 2� N

|�'| ⇠ |'0|

Vainshtein and K-mouflage mechanisms

�'

MPl
= � �('0)a2�⇢m

M2
PlZ('0)k2

=
2�

Z
 N

 =


1 +

2�2('0)

Z('0)

�
 N

GR is not recovered on large linear scales

Gravity is amplified by 

1 + 2�2/Z

m = 0

Z(') = 1 + a(')
(@')2

M4
+ b(')L2 ⇤'

MPl
+ . . .

VainshteinK-mouflage

|r2'|
MPl

& L�2

curvature of 
Newton’s potential

|r'| & M2

gradient of 
Newton’s potential  
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These 3 screening mechanisms appear at different scales and densities (different criteria). 

Their effects are different:

- recover GR at large scales (beyond Compton wavelenght) or not

- thin-shell effect or not

- time dependence of Newton’s constant or not

Chameleon:
Damour-Polyakov 

(dilaton/symmetron):

K-mouflage/
Vainshtein:

short range low amplitude

damped within a characteristic radius

The 5th force is screened because it is:



I-  CHAMELEON SCENARIO

f(R) theories: Sgrav =

Z
d

4
x

p
�g

M

2
Pl

2
f(R) f(R) = RGR:

This is equivalent to a scalar-tensor theory:

S =

Z
d

4
x

p
�g̃

"
M̃

2
Pl

2
R̃� 1

2
(@')2 � V (')

#
+ Sm( (i)

m , gµ⌫)

gµ⌫ = e2'/
p
6M̃Pl g̃µ⌫e�2'/

p
6M̃Pl = f 0, V (') = M̃2

Pl
Rf 0 � f

2f 02

Hu & Sawicki (2007)



Because of the conformal coupling, there is an explicit coupling between matter 
and the scalar field. The KG eq. for the scalar field involves the effective potential:

Ve↵(') = V (') + ⇢[A(')� 1]

V (') =
M4+n

'n A(') = e�'/M̃PlTypically:

Chameleon Screening 
Mass/Range of field depends on local density

Chameleon f(R)-gravity
short range

long range

A(�)⇢

A(�)⇢

V (�)

V (�)

Veff (�)

Veff (�)

Hu & Sawicki

Chameleon Screening 
Mass/Range of field depends on local density

Chameleon f(R)-gravity
short range

long range

A(�)⇢

A(�)⇢

V (�)

V (�)

Veff (�)

Veff (�)

Hu & Sawicki

Mota (2016)

The minimum and curvature of the effective potential depend on the environment.

Brax et al. (2012)

Wang et al. (2012)

Khoury & Weltman (2004)



Thin-shell effect:

The effect of the environment

When conformally coupled to matter, scalar fields  have  a matter dependent effective potential

Environment 
dependent 
minimum

The field generated from deep inside is Yukawa 
suppressed. Only a thin shell radiates outside the 
body. Hence suppressed scalar contribution to the 
fifth force.Chameleon

Brax (2016)

In a high-density object like a star, the scalar field becomes short-ranged.
Only the surface of the object where the field has nonzero gradients 
contributes to the fifth force.

Screened and unscreened objects do not 
respond in the same fashion to a distant mass

violation of the 
strong equivalence 

principle

Khoury & Weltman (2004)



II-  DAMOUR-POLYAKOV SCENARIO

A)  Dilaton models Ve↵(') = V (') + ⇢[A(')� 1]

Typically: V (') = V0e
�'/M̃Pl A(') = 1 +

A2

2M̃2
Pl

'2

Low-density region High-density region

 0

 1

 2

 3

 4

 5

-4 -2  0  2  4
V

ϕ/MPl

V
ρ (A-1)

Veff

 0

 1

 2

 3

 4

 5

-4 -2  0  2  4

V

ϕ/MPl

V
ρ (A-1)

Veff

long range, large coupling short range, small coupling

� ⌘ M̃Pl
d lnA

d'
! 0

The coupling depends on the environment.

conformal function 
has a minimum

Damour & Polyakov (1994)



B)  Symmetron models Ve↵(') = V (') + ⇢[A(')� 1]

Typically: V (') = �µ2

2 '2 + �
4'

4 A(') = 1 + 1
2M2'2

Ve↵(') =
1
2

� ⇢
M2 � µ2

�
'2 + �

4'
4

-1

 0

 1

 2

 3

 4

 5

-4 -2  0  2  4

V

ϕ/MPl

V
ρ (A-1)

Veff

-1

 0

 1

 2

 3

 4

 5

-4 -2  0  2  4

V

ϕ/MPl

V
ρ (A-1)

Veff

Low-density region High-density region
large coupling zero coupling

conformal function 
has a minimum

double well

phase transition between low and 
high-density regions

The coupling depends on the environment. Brax et al. (2012)

Hinterbichler & Khoury (2010)



III-  K-MOUFLAGE SCENARIO

S =

Z
d

4
x

p
�g̃

"
M̃

2
Pl

2
R̃+M4

K(�̃)

#
+ Sm( (i)

m , A

2(')g̃µ⌫) �̃ = � 1

2M4
@µ'@µ'

In the linear regime the deviations from GR are set by: 2�2

K̄ 0

Screening in the non-linear regime: K̄ 0 � 1

d'

dr
K 0

 
� 1

2M4

✓
d')

dr

◆2
!

=
�M(< r)

M̃Pl4⇡r2
�

M̃Pl

d'

dr
=

2�2

K 0
d N

dr

- far from the compact object:

d N

dr
! 0,

d'

dr
! 0, K 0 ! 1 1 + 2�2gravity amplified by

- close to the compact object:

d N

dr
! 1,

d'

dr
! 1, K 0 ! 1 5th force is negligible

KG:

Brax & V. (2014)

Babichev et al. (2009)



K-mouflage radius: RK =

✓
�M

4⇡M̃PlM2

◆1/2

Inside we recover GR

Outside deviation from GR, gravity is amplified

No thin-shell effect !

RK

RK

d'

dr
K 0

 
� 1

2M4

✓
d')

dr

◆2
!

=
�M(< r)

M̃Pl4⇡r2

Brax & V. (2014)



IV-  VAINSHTEIN SCENARIO

The mechanism is similar to the K-mouflage case, except that it relies on the curvature 
rather than the gradient.

Cubic Galileon model: L(') = �1

2
(@')2 � @2'

2⇤3
(@')2 +

�

M̃Pl

'T

RV =

✓
3�M

4⇡M̃Pl⇤3

◆1/3

We recover GR inside the Vainshtein radius:

Nicolis, Rattazzi, Trincherini (2009)

Deffayet et al. (2011)

Vainshtein (1972)
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g̃µ⌫ = A2(') gµ⌫

� ! 0 : K(�) ' �1 + �+ ...

I-  DEFINITION  OF  THE  MODEL

Coupling matter -- scalar field 
through the Jordan-metric 

conformal rescaling

(K-essence model with universal conformal coupling to matter)

M4 = ⇢⇤

S =
Z

d

4
x

p
�g


M

2
Pl

2
R +M4

K(�)
�

+ Sm( (i)
m , A

2(')gµ⌫) � = � 1
2M4

@µ' @µ'

- uniform time-dependent configurations (i.e., background): � > 0

- quasi-static configurations (i.e., small-scale 
nonlinear structures): negative tail

� < 0

The cosmological background and cosmological structures 
only probe the positive tail.

Positive and negative tails:

� ⌘MPl
d lnA

d'

non-standard non-linear 
kinetic function

Deviations from LCDM and GR are set by: 2�2

K 0

In Jordan frame the Planck mass depends on time: GN / Ā2

Babichev et al. (Int. J. Mod. Phys. D, 18, 2147, 2009)
Brax & PV (PRD 90, 023507, 2014)

We recover a cosmological-constant behavior at late times if:

coupling

inertia

Good or Bad ??



A)  Cosmological constraints � > 0

K 0 > 0, K 0 + 2�K 00 > 0

p
�K 0

(�)! +1 for �! +1

K 0 � 1 for �� 1

� . 0.1

no ghosts, no small-scale instabilities around cosmological background

well-defined cosmology up to high redshift

dark energy is subdominant at high z

< 1-10% deviation for large-scale structures

< 10% deviation of  Newton’s constant since BBN

B)  Small-scale constraints � < 0

K 0 > 0, K 0 + 2�K 00 > 0

p
��K 0

(�)! +1 for �! �1

no small-scale instabilities, well-defined static profile and 
Cauchy problem

well-defined profile up to high densities

II-  COSMOLOGICAL  AND  SOLAR  SYSTEM  CONSTRAINTS 



C)  Solar System constraints

�2

K 0  10�5 Cassini bound on the amplitude of the fifth force

RK(M) =

s
�M

M�
3470 AU The Solar System is screened

�  0.1 Lunar Laser Ranging upper bound on the local rate of change of Newton’s constant

This gives a direct constraint on cosmological structure formation !

Deviations of the linear matter power spectrum cannot be more than few percents.

A very tight constraint comes from the bound on the anomalous perihelion of the Moon:

�✓ = ⇡r
d

dr


r2 d

dr

⇣ ✏

r

⌘�
 2⇥ 10�11 ✏ =

� 
 N

=
�c2'

MPl N
where

is the ratio between the fifth-force 
potential and the Newtonian 
potential

We obtain:

The only way of satisfying the perihelion bound is to suppress K’’ 
in the Solar System.

�✓ = �8⇡
�2

K 0
�K 00

K 0 + 2�K 00  2⇥ 10�11



D)  Laboratory constraints measures of the Newtonian force

�2

K 0  10�4 less stringent than Cassini but further in the non-linear regime

E)  Models

A family of models that pass all constraints: K 0 = 1 + K⇤
�n

�n
⇤ + �n

�  0.1, K⇤ � 103, �⇤ <

✓
K⇤
n

10�10

◆1/n 1012

K2
⇤

with

In particular, the field can behave like a canonically normalized field up to high 
redshift (K’=1), giving a maximal deviation from LCDM. 

(�⇤, K⇤) = (1, 103), (1, 104), (102, 103)Three models with n=2:

cubic model: K(�) = �1 + � + �3

In the next slides we show:



cubic

f(z) =
d lnD+

d ln a

✏2 =
d ln Ā

d ln a
⇠ �2�2

K 0
power spectrum

halo mass function

K-mouflage models can reach a 10% deviation in the power spectrum on non-linear scales 
and few percents on linear scales.

The large-mass tail of the halo mass function shows large deviations. This is expected 
as K-mouflage does not screen clusters.

These properties are different from what happens for the Vainshtein mechanism (large clusters are 
screened) and for chameleons such as f(R) (where GR is recovered on large scales).  



III-  COSMOLOGICAL CONSTRAINTS

In the Jordan frame the Planck mass becomes time dependent (the field is not frozen 
to a fixed value) drift with redshift of Newton’s constant

A)  Effects on the Background
Benevento et al. (2019)

JCAP05(2019)027

Figure 1. Left panel : relative deviation of the Hubble function �H/H from the ⇤CDM reference.
Right panel : relative deviation of the e↵ective Newtonian constant, from the ⇤CDM reference. The
e↵ective Newtonian constant is defined as GN,e↵ = µGN , with µ given in eq. (2.5). We consider a
K-mouflage model with parameters {↵U = 1, �U = 1, m = 3, �A = 0.2, ✏2,0 = �2 ⇥ 10�2} and
a K-mimic model with parameters {m = 3, �A = 0.2, ✏2,0 = 2 ⇥ 10�2}. As we can see, K-mimic

models reproduce the expansion history given by H2 = H2
0 (⌦̂m,0/a3+⌦�,0/a4+(1�⌦̂m,0�⌦�,0)) and

recover the ⇤CDM solution in this plot, given by H2 = H2
0 (⌦m,0/a3 +⌦�,0/a4 +(1�⌦m,0�⌦�,0)), for

a ⌧ aeq. K-mouflage shows instead substantial deviations in the background expansion, throughout
all the cosmic epochs.

the initial amplitude of comoving curvature fluctuation at As = 2.1⇥10�9 (k0 = 0.05Mpc�1)
and the reionization optical depth at ⌧ = 0.05.

The combined e↵ect of the running of the Planck mass and of the fifth force, alters
gravity at early and late times. This a↵ects both the cosmological background and the
perturbation dynamics.

For K-mouflage models the expansion history deviates from ⇤CDM, also at early times
during the radiation dominated epoch. K-mimic models produce the expansion history of a
⇤CDM model with an increased matter density (⌦̂m), as explained in section 2.1. This implies
that, for a fixed matter density, the Hubble rate deviates during the matter-dominated epoch
while it recovers the ⇤CDM solution during the radiation-dominated era. This behaviour is
displayed in the left panel of figure 1, where we plot the relative deviation of the Hubble of
rate from the ⇤CDM reference for two representative K-mouflage and K-mimic models.

The non-minimal coupling of the scalar field to matter fields, determines a running
of the e↵ective Planck mass, or equivalently of the e↵ective Newtonian constant, which is
displayed in the right panel of figure 1. We can see that in the case of K-mouflage the e↵ective
Newtonian constant is higher than the GR value at all redshifts. For K-mimic scenarios, in
which Ā2 < 1 and ✏1 > 0, the e↵ective Newtonian constant function is lower than in GR
until very low redshifts.

Figure 2 shows the background energy density of the scalar field in units of the critical
density and its equation of state, for the same models considered in figure 1. As we can
see, in K-mouflage models the scalar field energy density becomes completely sub-dominant
for z & 1 and the early-time deviation of the Hubble rate from ⇤CDM is only determined
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deviations from LCDM at the background level (unless tuning)

|✏2| = 2⇥ 10�2

�H/H �GN/GN

JCAP05(2019)027

Figure 3. Evolution of the Bardeen potentials � and  , as defined in section 2, for three di↵erent
Fourier modes in K-mouflage, K-mimic and GR. The mode k = 0.1 enters the horizon at z ⇠ 4⇥ 104,
the mode k = 0.01 enters the horizon at z ⇠ 3200, while the mode k = 0.001 enters the horizon at
z ⇠ 5.6. We use the same parameters of the previous plot for K-mouflage and K-mimic.

Figure 4. Temperature power spectrum for K-mouflage (left panel, violet curve) and K-mimic (right
panel, cyan curve) compared to the solution obtained in the ⇤CDM limit ✏2,0 ! 0 (black curve). We
consider a K-mouflage model with parameters {↵U = 1, �U = 1, m = 3, �A = 0.2, ✏2,0 = �2 ⇥ 10�2}
and a K-mimic model with parameters {m = 3, �A = 0.2, ✏2,0 = 2 ⇥ 10�2}.

is the conformal time. The angular position of the peaks is with good approximation propor-
tional to the ratio: ⌧0�⌧?

rs
, and in K-mouflage this ratio results to be higher than in ⇤CDM,

determining the shift. In K-mimic models, the Hubble factor is modified during the matter
dominated epoch, as shown in figure 1, but the ratio ⌧0�⌧?

rs
remains almost constant as the

parameters move away from the ⇤CDM limit and we do not observe any shift in the angular
position of acoustic peaks. On the other hand in the case of K-mimic, the scalar field repre-
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shift of the CMB peaks
deviation of the amplitude

of the CMB peaks
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The last two equations can be employed to determine ¯̃� as a function of the scale factor
through

d ln ¯̃�

d ln a
=

1
¯̃�K̄ 0

dK̄

d ln a
. (2.21)

As discussed in ref. [12], in K-mouflage models one is free to set the present value of both
the scalar field ' and the kinetic factor �̃, corresponding to a choice of normalization for
the kinetic function K(�̃) and its derivative K 0(�̃). For K-mimic models, besides the con-
dition given by eq. (2.18), we impose the normalization K̄ 0

0 = 1, obtaining the initial con-
dition for eq. (2.21) at z = 0, �̃0, from eq. (2.20), while the backward integration provides
�̃(a) at all times. Together with eq. (2.19), this gives a parametric definition of the kinetic
function K(�̃).

To complete the definition of the K-mimic model, we implicitly define the conformal
coupling through a given function Ā(a). This directly yields the factor ✏2(a) from eq. (2.3),
and we obtain '(a) by integrating eq. (2.11), with the initial condition '(t = 0) = 0. This
provides a parametric definition of the coupling A(').

To obtain a background evolution completely degenerate with a ⇤CDM model, we
should impose ⌦̂i = ⌦i for all species. However, this requirement does not satisfy the
stability conditions discussed in [12] to avoid ghosts. Indeed, as we require �̃ > 0, K 0 > 0
and A > 0 we can see from eq. (2.20) and eq. (2.3) that we must have

Ā

3a4


(3a⌦̂m0+4⌦̂�0)

✓
Ā�a

dĀ

da

◆
�(3a⌦m0+4⌦�0)Ā

3+2a2(a4⌦̂⇤+a⌦̂m0+⌦̂�0)
d2Ā

da2

�
> 0 .

(2.22)
This inequality must be satisfied in the range 0  a  1. Indeed, using the normalization
eq. (2.6) for the coupling function, and taking ✏2 > 0, the left hand side of eq. (2.22) is
a decreasing function of a. Imposing ⌦̂�0 = ⌦�0, as both the parameters are fixed by
measurement of the CMB temperature, we are left with a condition on the parameter ⌦̂m0

at a = 1

⌦̂m0 >
⌦m0

1 � ✏2,0
+ 4⌦�0

✏2,0 � 2d2Ā
da2

|a=1

3(1 � ✏2,0)
. (2.23)

Equation (2.23) shows that even within K-mimic models, the background evolution can-
not be completely degenerate with ⇤CDM. Indeed, given a set of cosmological parameters
{⌦b0, ⌦c0, ⌦�0, H0} K-mimic models reproduce the same H(a) of a ⇤CDM model with a
slightly higher matter density.

Once a value for ⌦̂m0 is picked, in agreement with the condition in eq. (2.23), this
automatically fixes the present value of �̃ via eq. (2.20). At z = 0 we should have �̃ ⌧ 0 to
recover a cosmological constant behaviour, so a natural choice is to take �̃0 ⇠ ✏2,0, allowing
to recover the exact ⇤CDM behaviour if ✏2,0 ! 0. Our specific choice for �̃0 and ⌦̂m0 is
reported in eq. (A.4) of appendix A.

2.2 Parametrization of the models

In order to test K-mouflage against cosmological observations, we define the coupling function
and the kinetic term as functions of the scale factor in terms of a set of parameters which
will be varied together with the standard cosmological parameters. The solution of the
background evolution equations for the model provides the relation between �̃, ' and a,
allowing to reconstruct the K(�̃) and A(') functions defined in the action (2.1).
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B)  Large-scale power spectra
JCAP05(2019)027

Figure 5. E↵ect of di↵erent K-mouflage and K-mimic parameters on cosmological observables.
Upper panels: relative deviation of the CMB temperature anisotropies power spectrum from the

⇤CDM prediction in units of its variance per multipole �` =
p

2/(2 + `)CTT (⇤CDM)
` . Middle panels:

relative deviation of the matter power spectrum from the ⇤CDM prediction �P (k)/P (k)⇤CDM . Lower
panels: relative deviation of the CMB lensing potential power spectrum from the ⇤CDM prediction

�C��
` /C

��(⇤CDM)
` . We show K-mouflage models (left panels, continuous lines) and K-mimic models

(right panels, dashed lines) with di↵erent choice of the parameters in agreement with Solar System
constraints (i.e. they have |✏2,0| = 0.01). Taking the red line as reference, we change one parameter
per time, obtaining the models labelled with di↵erent colours. The parameter �U is fixed to 1 for all
the K-mouflage models.

Increasing the value of �A (green curve), seems to push the spectra toward the ⇤CDM
limit. Indeed, taking the limit �A ! 1 in the definition of Ā(a) eq. (2.24) gives Ā !
1� (1� a⌫A)✏2,0/⌫A, which remains close to 1 for typical values of ✏2,0 (the exponent ⌫A can
vary between 1 and 1.5). We thus expect data to show some degree of degeneracy between
✏2,0 and �A.

The parameters ↵U and �U that control the late-time behaviour of the kinetic function in
K-mouflage models have small impact on the cosmological observables. The spectra showed
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C)  Parameter constraints JCAP05(2019)027

parameter CMB CMB+CMBL CMB+CMBL+SN+BAO

✏2,0 < 2.1 · 10�3 < 2.4 · 10�3 < 2.3 · 10�3

�A � � �
m 1.6+1.9

�0.61 1.4+1.1
�0.44 1.5+1.3

�0.53

H0 67.4+1.4
�1.3 67.5+1.2

�1.3 67.9+0.9
�0.9

⌦m 0.312+0.019
�0.018 0.311+0.018

�0.017 0.305+0.011
�0.012

�8⌦0.5
m 0.46+0.02

�0.02 0.45+0.016
�0.015 0.45+0.014

�0.013

Table 4. The 95% C.L. marginalized constraints on the K-mimic model parameters, the Hubble
constant H0, the total matter density parameter ⌦m and �8⌦0.5

m . We do not report the constraints
on parameters that are compatible with the prior at 95% C.L. .
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Constraints on K-mouflage
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↵U
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Figure 6. The marginalized joint posterior for a subset of parameters of the K-mouflage model
and the Hubble constant. In all three panels di↵erent colors correspond to di↵erent combination of
cosmological probes, as shown in legend. The darker and lighter shades correspond respectively to
the 68% C.L. and the 95% C.L. regions.

This picture significantly changes when we consider the K-mimic model. As we com-
mented in section 2.1, this model has an e↵ect at the background level that can be reabsorbed
by a redefinition of ⌦m but shows significant modifications of the dynamics of perturbations.
Since the constraining power of Planck measurements is higher at the level of perturbations
the constraint on the ✏2,0 parameter is improved as well by about one order of magnitude.
Also the m parameter is much more constrained, with preferred values around 2, excluding
the cubic solution m = 3 in this scenario. We also notice that, since the K-mimic cosmo-
logical background is e↵ectively unchanged, there is now no degeneracy between ✏2,0 and
the Hubble constant, as can be clearly seen from figure 7. The K-mimic model cannot be
used to solve the tension between Planck measurements and distance ladder measurements.
Since the K-mimic model results in suppressed growth of late time cosmic structures, we
investigate, in figure 7, whether it is possible in this case to ease significantly the �8 tension.
Indeed the posterior of ✏2,0 and �8⌦0.5

m shows a degeneracy but that is not strong enough to
reconcile measurements of Planck with measurements from weak lensing surveys. Cosmolog-
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parameter CMB CMB+CMBL CMB+CMBL+SN+BAO ALL

|✏2,0| < 0.04 < 0.04 < 0.04 < 0.042

�A � � � �
↵U 0.4+1.0

�0.42 0.4+1.0
�0.42 0.31+0.59

�0.31 0.41+0.91
�0.41

�U � � � �
m � � � �
H0 70.1+4.1

�3.4 70.3+4.1
�3.4 70.1+3.2

�2.6 71.5+3.3
�3.1

⌦m 0.290+0.030
�0.034 0.286+0.030

�0.034 0.289+0.021
�0.024 0.278+0.023

�0.024

�8⌦0.5
m 0.46+0.02

�0.02 0.45+0.016
�0.015 0.45+0.013

�0.012 0.45+0.012
�0.012

Table 3. The 95% C.L. marginalized constraints on the K-mouflage model parameters, the Hubble
constant H0, the total matter density parameter ⌦m and �8⌦0.5

m . We do not report the constraints
on parameters that are compatible with the prior at 95% C.L. .

BAO does not lower this bound sensibly, showing that the most of the constraining power
comes from early time probes, as expected. Remarkably, when we add local measurements of
H0, the constraint on ✏2,0 become looser, showing that there is a degeneracy between these
two parameters. This degeneracy is evident from the first panel of figure 6, where we see the
marginalized joint posterior of ✏2,0 and H0. At the leading order, a decrease of ✏2,0, which is
negative in K-mouflage, can be balanced by an increase of H0, since the two parameters shift
the acoustic peaks of the CMB power spectrum in opposite directions. As shown in table 3
the best-fit value for the K-mouflage H0 is higher than the one estimated assuming ⇤CDM.
This means K-mouflage models can mitigate the tension between CMB estimates and direct
measurements of H0 via distance ladder, that is found at about 3� in ⇤CDM. CMB and BAO
data constrain well the ⌦mh2 parameter, whose best fit value is compatible with the ⇤CDM
one up to percent level. Together with the higher preferred value for H0, this implies a lower
best-fit value for ⌦m in K-mouflage. Notice that the statistical significance of the H0 tension
is lowered but is not directly translated into a significant detection of ✏2,0. The K-mouflage
model parameters are in fact largely degenerate and thus lower the statistical power of CMB
constraints on H0, as can be seen from table 3 and as confirmed by the MCMC. The same
argument applies to many of the K-mouflage model parameters that result in similar e↵ects, as
discussed in section 4, and are thus found to be largely unconstrained. In particular �A, m and
�U are compatible with the prior at 95% C.L. Apart from ✏2,0, the only K-mouflage parameter
which we find to be fairly constrained by data is ↵U . This parameter only a↵ects large scales,
as we have shown in section 4, thus its e↵ect is not degenerate with that of other parameters.

Comparing the MCMC results with the Fisher forecast in section 5.1 we can see that
they qualitatively confirm this picture. The forecasted error bar on the ✏2,0 parameter is
stronger than the actual result because of non-Gaussianities in the posterior due to the large
number of weakly constrained parameters. Furthermore these confirm that ✏2,0 is the only
parameter that we can significantly constrain while the other parameters of the K-mouflage
model are mostly unconstrained. The results of table 3 also show that the CMB constraining
power on H0 is significantly lowered due to degeneracies with K-mouflage parameters. This
e↵ect would be, however, much weaker for a CORE -like experiment, whose observations
could then be used to detect K-mouflage, at much higher statistical significance.
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parameter CMB CMB+CMBL CMB+CMBL+SN+BAO

✏2,0 < 2.1 · 10�3 < 2.4 · 10�3 < 2.3 · 10�3

�A � � �
m 1.6+1.9

�0.61 1.4+1.1
�0.44 1.5+1.3

�0.53

H0 67.4+1.4
�1.3 67.5+1.2

�1.3 67.9+0.9
�0.9

⌦m 0.312+0.019
�0.018 0.311+0.018

�0.017 0.305+0.011
�0.012

�8⌦0.5
m 0.46+0.02

�0.02 0.45+0.016
�0.015 0.45+0.014

�0.013

Table 4. The 95% C.L. marginalized constraints on the K-mimic model parameters, the Hubble
constant H0, the total matter density parameter ⌦m and �8⌦0.5

m . We do not report the constraints
on parameters that are compatible with the prior at 95% C.L. .

Figure 6. The marginalized joint posterior for a subset of parameters of the K-mouflage model
and the Hubble constant. In all three panels di↵erent colors correspond to di↵erent combination of
cosmological probes, as shown in legend. The darker and lighter shades correspond respectively to
the 68% C.L. and the 95% C.L. regions.

This picture significantly changes when we consider the K-mimic model. As we com-
mented in section 2.1, this model has an e↵ect at the background level that can be reabsorbed
by a redefinition of ⌦m but shows significant modifications of the dynamics of perturbations.
Since the constraining power of Planck measurements is higher at the level of perturbations
the constraint on the ✏2,0 parameter is improved as well by about one order of magnitude.
Also the m parameter is much more constrained, with preferred values around 2, excluding
the cubic solution m = 3 in this scenario. We also notice that, since the K-mimic cosmo-
logical background is e↵ectively unchanged, there is now no degeneracy between ✏2,0 and
the Hubble constant, as can be clearly seen from figure 7. The K-mimic model cannot be
used to solve the tension between Planck measurements and distance ladder measurements.
Since the K-mimic model results in suppressed growth of late time cosmic structures, we
investigate, in figure 7, whether it is possible in this case to ease significantly the �8 tension.
Indeed the posterior of ✏2,0 and �8⌦0.5

m shows a degeneracy but that is not strong enough to
reconcile measurements of Planck with measurements from weak lensing surveys. Cosmolog-
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Figure 7. The marginalized joint posterior for a subset of parameters of the K-mimic model, the
Hubble constant and �8⌦0.5

m . In all three panels di↵erent colors correspond to di↵erent combination
of experiments, as shown in legend. The darker and lighter shades correspond respectively to the 68%
C.L. and the 95% C.L. regions.

ical data strongly constrain this model, pushing it towards its ⇤CDM limit, as we can see
from the value of ✏2,0 in table 4. As expected in this case, the estimate for the standard
cosmological parameters (like H0 and ⌦m) are practically indistinguishable from the results
found in ⇤CDM.

The constraints shown in tables 3–4 can be used to infer a viability range for the cou-
pling and the kinetic function, which is however dependent on the chosen parametrization.
Considering extremal values for the parameters, allowed by our 95% C.L. limits, we obtain
a conservative estimate on how much the two functions can deviate from their ⇤CDM limit
according to our analysis, this is represented in figure 8. We can see that the coupling func-
tion is much more constrained in K-mimic scenarios than in K-mouflage, due to the tighter
constraint on the ✏2,0 parameter. In both models the kinetic function has to reproduce the
cosmological constant behaviour for z ! 0. In K-mimic the cosmological constant behaviour
is reached at higher redshift than in K-mouflage, again this is a sign of the fact that the for-
mer model is more constrained by data. The large excursion of the kinetic function at very
high redshift in K-mimic is related to the non-negligible scalar field energy density, required
to compensate for the pre-factor [A/(1 � ✏2,0)]2 in the Friedmann equation, as discussed in
the previous sections.

Using eqs. (2.3)–(2.4) we can also obtain an upper bound (95% C.L.) for the present-day
value of the ✏1 function and of the coupling strength �. For K-mouflage we get ✏1(a = 1) < 0.1
and �(a = 1) < 0.22, while for K-mimic we get and ✏1(a = 1) < 0.0013 and �(a = 1) < 0.026.

The upper bound for the for present-day value of the phenomenological modified gravity
parameters µ and ⌃ can then be obtained using eq. (2.5). We find 0  µ0 � 1 < 0.1 for K-
mouflage and 0  µ0 � 1 < 0.0013 for K-mimic, while ⌃0 � 1 = 0 (fixed by the choice
Ā0 = 1). These values are in agreement with the estimate recently obtained by the Dark
Energy Survey [47] collaboration using a combined analysis of galaxy clustering and weak
gravitational lensing.
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parameter CMB CMB+CMBL CMB+CMBL+SN+BAO ALL

|✏2,0| < 0.04 < 0.04 < 0.04 < 0.042

�A � � � �
↵U 0.4+1.0

�0.42 0.4+1.0
�0.42 0.31+0.59

�0.31 0.41+0.91
�0.41

�U � � � �
m � � � �
H0 70.1+4.1

�3.4 70.3+4.1
�3.4 70.1+3.2

�2.6 71.5+3.3
�3.1

⌦m 0.290+0.030
�0.034 0.286+0.030

�0.034 0.289+0.021
�0.024 0.278+0.023

�0.024

�8⌦0.5
m 0.46+0.02

�0.02 0.45+0.016
�0.015 0.45+0.013

�0.012 0.45+0.012
�0.012

Table 3. The 95% C.L. marginalized constraints on the K-mouflage model parameters, the Hubble
constant H0, the total matter density parameter ⌦m and �8⌦0.5

m . We do not report the constraints
on parameters that are compatible with the prior at 95% C.L. .

BAO does not lower this bound sensibly, showing that the most of the constraining power
comes from early time probes, as expected. Remarkably, when we add local measurements of
H0, the constraint on ✏2,0 become looser, showing that there is a degeneracy between these
two parameters. This degeneracy is evident from the first panel of figure 6, where we see the
marginalized joint posterior of ✏2,0 and H0. At the leading order, a decrease of ✏2,0, which is
negative in K-mouflage, can be balanced by an increase of H0, since the two parameters shift
the acoustic peaks of the CMB power spectrum in opposite directions. As shown in table 3
the best-fit value for the K-mouflage H0 is higher than the one estimated assuming ⇤CDM.
This means K-mouflage models can mitigate the tension between CMB estimates and direct
measurements of H0 via distance ladder, that is found at about 3� in ⇤CDM. CMB and BAO
data constrain well the ⌦mh2 parameter, whose best fit value is compatible with the ⇤CDM
one up to percent level. Together with the higher preferred value for H0, this implies a lower
best-fit value for ⌦m in K-mouflage. Notice that the statistical significance of the H0 tension
is lowered but is not directly translated into a significant detection of ✏2,0. The K-mouflage
model parameters are in fact largely degenerate and thus lower the statistical power of CMB
constraints on H0, as can be seen from table 3 and as confirmed by the MCMC. The same
argument applies to many of the K-mouflage model parameters that result in similar e↵ects, as
discussed in section 4, and are thus found to be largely unconstrained. In particular �A, m and
�U are compatible with the prior at 95% C.L. Apart from ✏2,0, the only K-mouflage parameter
which we find to be fairly constrained by data is ↵U . This parameter only a↵ects large scales,
as we have shown in section 4, thus its e↵ect is not degenerate with that of other parameters.

Comparing the MCMC results with the Fisher forecast in section 5.1 we can see that
they qualitatively confirm this picture. The forecasted error bar on the ✏2,0 parameter is
stronger than the actual result because of non-Gaussianities in the posterior due to the large
number of weakly constrained parameters. Furthermore these confirm that ✏2,0 is the only
parameter that we can significantly constrain while the other parameters of the K-mouflage
model are mostly unconstrained. The results of table 3 also show that the CMB constraining
power on H0 is significantly lowered due to degeneracies with K-mouflage parameters. This
e↵ect would be, however, much weaker for a CORE -like experiment, whose observations
could then be used to detect K-mouflage, at much higher statistical significance.
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parameter CMB CMB+CMBL CMB+CMBL+SN+BAO

✏2,0 < 2.1 · 10�3 < 2.4 · 10�3 < 2.3 · 10�3

�A � � �
m 1.6+1.9

�0.61 1.4+1.1
�0.44 1.5+1.3

�0.53

H0 67.4+1.4
�1.3 67.5+1.2

�1.3 67.9+0.9
�0.9

⌦m 0.312+0.019
�0.018 0.311+0.018

�0.017 0.305+0.011
�0.012

�8⌦0.5
m 0.46+0.02

�0.02 0.45+0.016
�0.015 0.45+0.014

�0.013

Table 4. The 95% C.L. marginalized constraints on the K-mimic model parameters, the Hubble
constant H0, the total matter density parameter ⌦m and �8⌦0.5

m . We do not report the constraints
on parameters that are compatible with the prior at 95% C.L. .

Figure 6. The marginalized joint posterior for a subset of parameters of the K-mouflage model
and the Hubble constant. In all three panels di↵erent colors correspond to di↵erent combination of
cosmological probes, as shown in legend. The darker and lighter shades correspond respectively to
the 68% C.L. and the 95% C.L. regions.

This picture significantly changes when we consider the K-mimic model. As we com-
mented in section 2.1, this model has an e↵ect at the background level that can be reabsorbed
by a redefinition of ⌦m but shows significant modifications of the dynamics of perturbations.
Since the constraining power of Planck measurements is higher at the level of perturbations
the constraint on the ✏2,0 parameter is improved as well by about one order of magnitude.
Also the m parameter is much more constrained, with preferred values around 2, excluding
the cubic solution m = 3 in this scenario. We also notice that, since the K-mimic cosmo-
logical background is e↵ectively unchanged, there is now no degeneracy between ✏2,0 and
the Hubble constant, as can be clearly seen from figure 7. The K-mimic model cannot be
used to solve the tension between Planck measurements and distance ladder measurements.
Since the K-mimic model results in suppressed growth of late time cosmic structures, we
investigate, in figure 7, whether it is possible in this case to ease significantly the �8 tension.
Indeed the posterior of ✏2,0 and �8⌦0.5

m shows a degeneracy but that is not strong enough to
reconcile measurements of Planck with measurements from weak lensing surveys. Cosmolog-
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D)  Viability regions for the model functions

JCAP05(2019)027

Figure 8. Viability regions for the coupling A and the kinetic K functions, expressed in terms of the
redshift z. We consider values of the parameters at the border of the marginalized confidence intervals
given in tables 3 and 4, i.e. {↵U = 1, �U = 1, m = 2, �A = 0.2, ✏2,0 = �4⇥ 10�2} for K-mouflage and
{↵U = 1, �U = 1, m = 2, �A = 0.2, ✏2,0 = 2 ⇥ 10�3}. The more the parameters approach the ⇤CDM
limit, the more the two functions move toward the constant solutions A = 1 and K = �1, crossing
the coloured regions.

6 Conclusions and outlook

In this paper we have used Cosmic Microwave Background data, in combination with BAO
and SNIe, to set constraints on parameters describing K-mouflage modified gravity models.

We have employed an e↵ective field theory description of these models and we implement
two parametrisations of K-mouflage in the EFTCAMB code in order to study their e↵ect
on cosmological observables. The former is based on five parameters, where the expansion
history of the Universe is free to vary, while the latter (K-mimic) has three free parameters
and is forced to reproduce a close to ⇤CDM background expansion. The K-mouflage and K-
mimic models will be publicly released soon as part of EFTCAMB. By varying the parameters
of the models we have verified that K-mouflage can produce significant deviations in CMB
angular power spectra, with respect to standard GR, and can be therefore tightly constrained
by CMB probes. We have verified this via a preliminary Fisher matrix analysis, which also
shows that future CMB experiments, such as CORE, could improve K-mouflage parameter
bounds currently achievable with Planck data, by approximately one order of magnitude.
For models in which the background expansion history varies, the constraining power mostly
come from shifts in the position of the peaks, due to changes in the angular diameter distance
to last scattering. For so called K-mimic models, in which the kinetic function of the scalar
degree of freedom is chosen in such as way as to impose a degenerate expansion history with
⇤CDM , the most distinctive signatures come instead from variation in the linear growth
rate of structures.

After this preliminary study, we have then implemented the model in the MCMC EFT-
CosmoMC code and derived actual parameter constraints from di↵erent data-sets, including
Planck CMB and CMB lensing, the JLA Supernovae sample and di↵erent galaxy catalogues
(BOSS, SDSS and 6dFGS). The most tightly constrained parameter is ✏2,0, measuring the
overall departure from ⇤CDM. In our analysis we have found upper limits for this parameter,
which remains consistent with its ⇤CDM limit (✏2,0 = 0) in both K-mouflage and K-mimic
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IV-  SPHERICAL COLLAPSE
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reference case, and the linear growth rates f(z). Again,
the relative deviation of the growing mode is greater for
the arctan model (71) than for the cubic model (74),
because of the lower value of K̄ ′ over relevant redshifts,
see Eq.(46) for the coefficient ϵ1 that modifies the linear
growing mode equation (55). All linear growing modes
converge at high redshift, despite the slightly different
Planck masses and Hubble expansion rates. Indeed,
far in the early matter-dominated era we recover an
Einstein-de Sitter cosmology and the Hubble term in the
parenthesis in Eq.(55) converges to H−2dH/dt → −3/2.
Moreover, the factor ϵ1 goes to zero because of the
nonlinear K-mouflage screening mechanism, see Eq.(46),
as at high redshift χ̃ and K̄ ′ become large. This large-K ′

behavior is also required to ensure that the background
dark energy density becomes subdominant.

We show the relative deviation of the linear growth
rates f(z) in Fig. 8. Overall, f(z) is greater for the K-
mouflage scenarios, in agreement with the higher value of
the linear growing mode shown in Fig. 7. The deviation is
again of the order of a few percent. The deviation for the
linear modes D+ shown in Fig. 7 could reach ten percent
at z = 0 because of the cumulative effect due to the
integration over time. The growth rates f(z) converge to
unity at high redshift but we can see that there remains
a noticeable difference between the K-mouflage models
and the Λ-CDM reference up to z ∼ 6.

This rather slow decrease of the deviations from the Λ-
CDM reference at higher redshift is a characteristic sig-
nature of K-mouflage models, as many other modified-
gravity models, such as f(R) theories, lead to a faster
convergence to the Λ-CDM scenario at z ! 2. This is
related to the fact that in the linear sub-horizon regime
the K-mouflage effects are scale independent, as the fac-
tors ϵ1(t) and ϵ2(t) only depend on time. In contrast, in
f(R) theories or Dilaton models, the factor ϵ(k, t) that
appears in the modified Euler or Poisson equations, or in
the evolution equation for the linear density modes, takes
the form ϵ(k, t) ∝ β2k2/(a2m2+k2), with a characteristic
physical scale 2π/m beyond which the theory converges
to General Relativity. At high redshift this scale typ-
ically goes to zero, so that at a fixed physical (or also
comoving) scale, deviations from the Λ-CDM scenario
vanish because the coupling β decreases or one enters
the unmodified regime beyond 2π/m. In the K-mouflage
models that we consider in this paper, because there is
no such characteristic scale the convergence to General
Relativity is only due to the vanishing of the effective
coupling strength β2/K ′, with β being constant (in our
case) and K ′ increasing at high z because of the nonlin-
ear K-mouflage mechanism itself. However, this decrease
of β2/K ′ at high z is rather slow for generic kinetic func-
tions K(χ), as seen from the curve obtained for ϵ1(t) in
Fig. 5 for the simple cubic model.
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E. Halo mass function

Solving the spherical collapse equation (60), we can
compute the linear density contrast threshold δL(z) that
corresponds to a nonlinear density contrast of δ[δL] =
∆m, where ∆m is the nonlinear threshold that we choose
to define halos. As discussed in [8], we are not interested
in δL(z) at the observation redshift, because it is not an
observable quantity. Instead, we wish to evaluate the
linear threshold δLi

, at a given high redshift zi, that is
required to produce at later time z a nonlinear density
contrast ∆m. In other words, we want to estimate the
initial density fluctuation associated with a given nonlin-
ear density contrast at the observed redshift. To avoid
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Solving the spherical collapse equation (60), we can
compute the linear density contrast threshold δL(z) that
corresponds to a nonlinear density contrast of δ[δL] =
∆m, where ∆m is the nonlinear threshold that we choose
to define halos. As discussed in [8], we are not interested
in δL(z) at the observation redshift, because it is not an
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V-  NON-LINEAR MATTER POWER SPECTRUM

This deviation of 20% is consistent with the deviation of
10% obtained for the linear growing modes in Fig. 7. The
deviation from the Λ-CDM reference grows on mildly
nonlinear scales, as nonlinearities amplify the effects of the
fifth force. This is related to the increase of the large-mass
tail of the halo mass function shown in Fig. 10, because on
these scales, the power spectrum and the correlation
function probe the formation of massive halos, as can be
clearly seen in a halo model approach. The deviation
decreases on smaller scales because the power spectrum
now probes the inner regions of halos, and we assume
similar NFW profiles [26] for all cosmologies (but this
regime shows a greater theoretical inaccuracy, and numeri-
cal simulations would be need to measure the impact of the
modified gravity on small highly nonlinear scales and halo
profiles). However, in the nonlinear range shown in Fig. 11,
the impact of changes to the mass function is greater than
that of halo profiles; see also Ref. [28] for a detailed study
of these various contributions.
The deviation from the Λ-CDM reference slowly

decreases at high z, as the fifth force mediated by the
scalar field becomes negligible (as seen from the vanishing

of the key factor β2=K̄0 as K̄0 → ∞). This decrease of the
deviations of large-scale clustering from the Λ-CDM
reference is slower than what is found in many other
modified-gravity scenarios, such as the fðRÞ theories, and
is characteristic of these K-mouflage models.

V. CLUSTERS OF GALAXIES

To go beyond background quantities and the large-scale
perturbative regime, we investigate in this section the
impact of K-mouflage scenarios on the largest collapsed
structures that we observe, that is, clusters of galaxies. This
provides another probe of modified-gravity models, which
is complementary with background and perturbative stud-
ies, as it corresponds to the nonlinear regime of the matter
density field and to the well-defined objects measured in
actual surveys.
For our purposes, clusters present two advantages as

compared with galaxies. First, they are unscreened objects
[8], so that the impact of the modification to gravity is very
simple and corresponds to a time-dependent effective
Newton constant (we shall check that this holds down to
the cluster cores in Sec. V B below). Therefore, one does
not expect dramatic qualitative changes from the Λ-CDM
case, and the same semiquantitative models can be applied
to both K-mouflage and Λ-CDM cosmologies. This is also
illustrated by the symmetry described in Sec. III G, which
shows that in this unscreened regime, from the point of
view of nonlinear gravitational clustering, the Λ-CDM
cosmology, quintessence models, and K-mouflage scenar-
ios, belong to the same class. They obey the same equations
of motion (67)–(68), with only slightly different time-
dependent functions κðtÞ from Eq. (70). Second, at first
order, clusters can be described by simple physical laws,
such as hydrostatic equilibrium for the gas profile and
bremsstrahlung emission for the x-ray luminosity, giving rise
to the so-called cluster scaling laws [29]. This is especially
true for the most massive clusters that we focus on.
In contrast, galaxies probe the transition from the

unscreened to screened regimes and also involve many
complex astrophysical phenomena, such as cooling proc-
esses, star formation, supernovae, and AGN winds and
feedback. Therefore, although they would be very interest-
ing probes, they are much more difficult to model, both for
the modified-gravity sector and for the usual galaxy for-
mation processes that also appear in the Λ-CDM cosmology.
In this paper, our goal is to estimate the magnitude of the

impact of K-mouflage models on clusters of galaxies rather
than building a very accurate description of clusters.
Therefore, we consider the simplest possible modelling
of clusters with only few physical parameters. This may not
provide the highest-accuracy cluster model, but we can
expect that it captures the main physical processes and
provides a robust estimate of the impact of modifications to
gravity. Moreover, we check that our predictions show a
reasonable agreement with observations.
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nonlinear scales, as nonlinearities amplify the effects of the
fifth force. This is related to the increase of the large-mass
tail of the halo mass function shown in Fig. 10, because on
these scales, the power spectrum and the correlation
function probe the formation of massive halos, as can be
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To go beyond background quantities and the large-scale
perturbative regime, we investigate in this section the
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ies, as it corresponds to the nonlinear regime of the matter
density field and to the well-defined objects measured in
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simple and corresponds to a time-dependent effective
Newton constant (we shall check that this holds down to
the cluster cores in Sec. V B below). Therefore, one does
not expect dramatic qualitative changes from the Λ-CDM
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dependent functions κðtÞ from Eq. (70). Second, at first
order, clusters can be described by simple physical laws,
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ing probes, they are much more difficult to model, both for
the modified-gravity sector and for the usual galaxy for-
mation processes that also appear in the Λ-CDM cosmology.
In this paper, our goal is to estimate the magnitude of the

impact of K-mouflage models on clusters of galaxies rather
than building a very accurate description of clusters.
Therefore, we consider the simplest possible modelling
of clusters with only few physical parameters. This may not
provide the highest-accuracy cluster model, but we can
expect that it captures the main physical processes and
provides a robust estimate of the impact of modifications to
gravity. Moreover, we check that our predictions show a
reasonable agreement with observations.
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FIG. 11 (color online). Upper panel: relative deviation of the
matter density power spectrum from the Λ-CDM reference, at
z ¼ 0 (solid lines) and z ¼ 2 (dashed lines), for the K-mouflage
models. Lower panel: relative deviation of the matter density
correlation function from the Λ-CDM reference.
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P (k)
⇠(x)

- Amplification grows with time

- It does not vanish on very large scales (massless scalar field)

- It peaks around the non-linear scale (small scales probe low mass halo and inner profiles)

- The relative deviations are significantly greater (x10) than for background quantities such as H(z)

- The deviations from LCDM decrease rather slowly at higher z

Combining 1-loop perturbation theory and a halo model, we can estimate 
the density power spectrum up to  nonlinear scales.



VI-  EFFECTS ON CLUSTERS OF GALAXIES

Small effect on halo 
concentration 

parameter

⇢s(M) = �f ⇢crit(zf)

A. Halo density profiles

To study the effects of K-mouflage scenarios on clusters
of galaxies, we need their dark matter profile. Because in
the unscreened regime gravitational clustering proceeds in
the same fashion in K-mouflage and Λ-CDM cosmologies,
as described in Sec. III G, we assume in all cases NFW
profiles [26],

ρDMðrÞ ¼
ρs

ðr=rsÞð1þ r=rsÞ2
: ð83Þ

This profile is characterized by a scaling radius and density,
respectively,l rs and ρs, which can be expressed in terms of
the concentration parameter c ¼ RΔc

=rs. Here RΔc
is the

radius such that the mean density within RΔc
isΔc times the

critical density, ρð< RΔc
Þ ¼ Δcρcrit, as we again define

the extension of the halos by an overdensity threshold with
respect to the critical density. From the definition of c, it is
possible to express ρs as

ρs ¼ ρcrit
Δc

3

c3

lnð1þ cÞ − c=ð1þ cÞ
; ð84Þ

which can be inverted to give c as a function of ρs.
To consider the effects of the presence of the scalar field

on the shape of the dark matter profile, we consider a
simple model for the halo concentration. We assume that
halos of mass M typically form at a redshift zfðMÞ
determined by

σðq; zfÞ ¼ σf ; ð85Þ

where q ¼ ð3M=4πρ̄0Þ1=3 is the halo Lagrangian radius and
σf is a free parameter, and that the density of the newly
formed halo is proportional to ρcritðzfÞ,

ρsðMÞ ¼ ΔfρcritðzfÞ; ð86Þ

with Δf a second free parameter. Equation (85) means that
halos of a given mass typically form when density
fluctuations at this mass scale reach the nonlinear regime,
while Eq. (86) assumes that the core of the cluster keeps a
roughly constant density after its formation, which is set by
the critical density at the formation time. As discussed in
Sec. IV E, we choose to rescale ρs in terms of the critical
density rather than the mean density at redshift zf because
the former is more physical at late times (whereas they
coincide at high redshift) and it also corresponds to our
definition of halos. Next, using Eq. (84), we compute cðMÞ,
and we define the dark matter density profile using (83).
In Fig. 12, we display the mass-concentration relation

obtained with the choice of parameters σf ¼ 0.2 and Δf ¼
500 (halos are again defined by Δc ¼ 200). As is well
known [30], the concentration c (and the scaling density ρs)
is larger for smaller mass, because in hierarchical scenarios,
smaller mass scales turned nonlinear at higher redshift

when the critical (and the mean) density of the Universe
was greater. This is of course consistent with our model
(85)–(86). We compare these results with the mass-
concentration relation obtained by Ref. [31], from the
analysis of 19 x-ray selected galaxy clusters from the
Cluster Lensing and Supernova Survey with Hubble, with a
mean redshift z≃ 0.37. We can see that reasonable choices
of the parameters σf andΔf (we naturally expect σf ≲ 1 and
Δf ≳ 200) allow us to obtain a reasonable match to
observations. This suggests that this simple modelling
captures the main features of the gravitational formation
of halos. Therefore, we do not consider here more sophis-
ticated models, which involve the past accretion history and
merging trees of virialized halos. These could provide more
accurate modelling, at the price of additional complexity
(and often additional parameters), but it is not clear if their
estimate of the dependence on the underlying gravity
theory would be much more accurate. Such studies are
left for future works, where N-body simulations would be
needed to check detailed models.
As expected, we find a small increase of the concen-

tration cðMÞ in the K-mouflage models, as compared with
the Λ-CDM reference. This is due to the faster growth of
gravitational clustering, which implies a slightly greater
scaling density ρsðMÞ. However, we can see that the effect
is rather modest.

B. Clusters are not screened

As noticed in Refs. [7,8], clusters are unscreened, and the
Klein–Gordon equation (23) can be kept at the linear level
over the fluctuations of the scalar field, as in Eq. (43). In
this section, we check that this property extends far inside
the cluster profile.
In the small-scale static limit, which corresponds for

instance to high-density astrophysical objects, the Klein–
Gordon equation (A3) becomes
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FIG. 12 (color online). Mass-concentration relation for NFW
halos, for the K-mouflage models and the Λ-CDM reference, at
z ¼ 0.37. The black points (with their error bars) are observa-
tional measures taken from Ref. [31].
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Clusters are not screened:  they feel the fifth force.

r� = r
 
 N +

�c2'

M̃pl

!
= �rpg

⇢g
Hydrostatic equilibrium with the fifth force:

ϵXðTÞ ¼ 4.836 × 10−24
4 − 2Y
ð4 − YÞ2

!
T

1 KeV

"
1=2

erg:s−1:cm3:

ð104Þ

Here Y is the helium mass fraction, and μ ¼ 2=ð4 − YÞ,
ne=ng ¼ ð2 − YÞ=ð4 − YÞ, and ðnH þ 4nHeÞ=ng ¼ 2=
ð4 − YÞ, where we assume complete ionization. This
applies to high temperatures of order 1 keV and above,
where the x-ray emissivity is dominated by bremsstrahlung.
Equation (103), with the emissivity (104), gives the total
bolometric luminosity. In practice, one measures the
radiation from x-ray clusters within finite frequency bands.
Therefore, we also define the luminosity within frequency
bands, denoted for instance as bands “A ¼ ½νA1 ; νA2 &,”
“B ¼ ½νB1 ; νB2 &,” …, by

LXAð< RÞ ¼ LXð< RÞðe−hνA1 =kBT̄g − e−hν
A
2 =kBT̄gÞ: ð105Þ

Observational studies often measure the x-ray properties
of galaxy clusters within a radius RX that is smaller than

R200c, because the luminosity scales as the squared density
[see Eq. (103)] so that inner high-density regions are easier
to measure. A popular choice is the radius set by the density
threshold Δc ¼ 500 with respect to the critical density. In
the following, keeping our definition of halos by the
threshold Δc ¼ 200 as in Figs. 10 and 12–14, we use
the density profile obtained from Eq. (98) and displayed in
Fig. 14 to compute x-ray properties within RX defined by
Δc ¼ 500 (hence, RX < Rhalo).
To avoid the complications due to the internal structures

of the clusters (presence of massive galaxies in the center,
importance of dissipative processes, cooling cores, …) and
also to follow the observational procedures, we define a
core radius Rcore outside of which we evaluate the quan-
tities of interest. As in many observational analyses, we
simply define Rcore as a fixed fraction of the cluster radius
RX (as defined by the threshold Δc ¼ 500 with respect to
the critical density), with Rcore ¼ fcoreRX and typically
fcore ∼ 0.15. Then, we obtain for instance the luminosity in
the outer cluster shells, between Rcore < r < RX, as

LXAno-core ¼ LXAð< RXÞ − LXAð< RcoreÞ: ð106Þ

In Figs. 15 and 16, we show, respectively, the M500c −
T500c-nocore and T500c-nocore − LXA-500c-nocore relations com-
pared to observations of clusters of galaxies in the x ray,
with the choice of parameter fcore ¼ 0.15 and the frequency
“A band” [0.1–2.4] keV. For the M − T relation, we obtain
a good agreement with observations, while our prediction
for the slope of the T − L relation is too shallow. This is a
well-known problem associated with a noticeable break-
down of the naive “scaling laws” for the x-ray luminosity,
especially for small clusters [35]. This is usually explained
by a decrease of the gas fraction and a greater importance of
nonthermal effects, or departures from hydrostatic equilib-
rium, in small clusters. However, because our goal is only
to estimate the magnitude of the effects due to modifica-
tions of gravity, we do not try to build a more accurate and
more complex model in this paper. Moreover, our simple
model is sufficient to recover the typical x-ray luminosity in
the range 4 < T < 15 keV, which corresponds to massive
bright clusters.
At fixed mass, the temperature in the K-mouflage

scenarios is greater than in the Λ-CDM reference by about
2%. This is mostly set by the factor ϵ1, which is about 2% as
seen in Fig. 5. Indeed, from Eq. (100), we can see that at a
fixed dark matter density profile the fifth-force enhance-
ment of gravity by the factor ð1þ ϵ1Þ yields an increase of
the dark matter velocity dispersion and of the gas temper-
ature by the same factor. The small deviations from this 2%
value, which depend on mass, that appear in Fig. 15
correspond to the small changes of the dark matter profile
through the modification of the concentration parameter
shown in Fig. 12.
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FIG. 14 (color online). Upper panel: density profiles for a
cluster of mass M200c ¼ 5 × 1014h−1M⊙. The upper solid lines
refer to the dark matter density profiles and the lower dotted lines
to the gas density profiles. The K-mouflage models and the
Λ-CDM reference cannot be distinguished in this figure. Lower
panel: relative deviation from the Λ-CDM reference of the dark
matter (solid lines) and gas (dotted lines) density profiles.
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Small effect on 
Mass - Temperature relation

At fixed temperature, the K-mouflage models give a
slightly lower x-ray luminosity. This is because at fixed
mass K-mouflage models give a higher temperature, as
seen in Fig. 15. Therefore, they give a lower mass at a
fixed temperature. Since the x-ray luminosity scales as
LX ∼ ρsM

ffiffiffiffi
T

p
, a lower mass implies a lower luminosity

(disregarding the impact on ρs). As expected, we find
percent deviations as for the M − T scaling law.
Thus, as for the quantities studied in previous sections,

we obtain percent deviations from the Λ-CDM scaling
laws. Unfortunately, this is probably too small to be used as
a meaningful constraint on these modified-gravity scenar-
ios, in view of the observational and theoretical uncertain-
ties. Therefore, it is unlikely that cluster scaling laws can
provide competitive constraints on such modified-gravity
models, that must also pass very tight Solar System bounds
and satisfy larger-scale cosmological constraints associated
with the growth of large-scale structures or the evolution of
the Hubble expansion rate (e.g., constraints from big bang
nucleosynthesis).

F. Cluster temperature function

Neglecting the scatter of the mass-temperature relation, by
combining the halo mass function described in Sec. IV E
with the mass-temperature relation obtained in Sec. VD and
Fig. 15, we obtain the x-ray cluster temperature function

nðTÞ ¼ nðMÞ d lnM
d lnT

: ð107Þ

In Fig. 17, we show the temperature functions computed for
the K-mouflage models together with the Λ-CDM case,
evaluated at z ¼ 0.05, to compare them with the observa-
tions obtained by Ref. [40].
We obtain a reasonable agreement with observations. As

is well known, this also means that the cluster temperature
is a rather robust quantity (as compared for instance with
the x-ray luminosity) and that it is not necessary to build
very sophisticated models to recover the right order of
magnitude. As shown in the lower panel, we now obtain
deviations for the cluster number counts that are of order
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FIG. 15 (color online). Upper panel: mass-temperature relation
for the K-mouflage models and the Λ-CDM reference, at z ¼
0.0288 (lower curves) and z ¼ 0.451 (upper curves). The data
points are taken from observations made by Refs. [36] (in green),
[37] (in magenta), and [38] (in brown), with clusters in the
redshift range 0.0288 ≤ z ≤ 0.451. Lower panel: relative
deviation of the cluster mass-temperature relation from the
Λ-CDM reference, at z ¼ 0.0288.
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FIG. 16 (color online). Upper panel: temperature-luminosity
relation for the K-mouflage models and the Λ-CDM reference, at
z ¼ 0.048 (lower curves) and z ¼ 0.451 (upper curves). The data
points are taken from observations made by Refs. [39] (in green)
and [38] (in brown), with clusters in the redshift range
0.048 ≤ z ≤ 0.451. Lower panel: relative deviation of the cluster
temperature-luminosity relation from the Λ-CDM reference, at
z ¼ 0.048.
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unity: the K-mouflage models can predict twice or three
times more high-T clusters than the Λ-CDM reference. As
we have seen, this difference is not due to deviations in the
cluster scaling laws, that is, in the intracluster medium,
which are quite small, but to the amplification of the high-
mass tail of the halo mass function already shown in
Fig. 10. Therefore, this result should be rather robust as it is
directly related to the faster growth of large-scale structures
in the K-mouflage scenarios.

G. Sunyaev–Zel’dovich effect

An indirect method to infer the properties of the clusters
is to use the Sunyaev–Zel’dovich effect (hereafter SZE)
[13]. It occurs when photons from the cosmic microwave
background (CMB) inverse Thompson scatter in the intra-
cluster medium. The measured CMB temperature is then
distorted with an amplitude proportional to the so-called
Compton parameter (see, e.g., Ref. [41]),

y ¼
Z

neσT
kBTg

mec2
dl; ð108Þ

where ne is the electron number density, Tg is the gas
temperature,me is the electron mass, σT ¼ 6.65×10−25 cm2

is the Thompson cross section, and dl denotes the integration
along the line of sight. Following a common observational
practice, by integrating over the angular area of the cluster,
defined for instance by the radius R500c associated with the
density contrast of 500 with respect to the critical density, we
define the integral Compton parameter

Y500c ≡
Z

ydΩ ¼ r−2d ðzÞ
Z

R500c

0
4πr2neðrÞσT

kBTg

mec2
dr;

ð109Þ

where rdðzÞ is the angular distance of the cluster located at
redshift z.
In Fig. 18, we show the relations Mg500c − Y500cr2dðzÞ

and T500c-nocore − Y500cr2dðzÞ for the K-mouflage models
and the Λ-CDM reference, and we compare them to the
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FIG. 17 (color online). Upper panel: cluster temperature
function for the K-mouflage models and the Λ-CDM reference,
at z ¼ 0.05. The data points are taken from observations made by
Ref. [40] from a sample of clusters with z≃ 0.05. Lower panel:
relative deviation of the cluster temperature function from the
Λ-CDM reference at z ¼ 0.05.
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FIG. 18 (color online). Integrated Comptonization within R500c
as a function of the gas mass (upper panel) and gas temperature
(lower panel) for the K-mouflage models and the Λ-CDM
reference. These different models cannot be distinguished in
these figures. We show our results for z ¼ 0.16 (lower curves in
the upper panel and upper curves in the lower panel) and z ¼ 1.45
(upper curves in the upper panel and lower curves in the lower
panel). The data points are measures from a sample of clusters in
the range 0.16 ≤ z ≤ 1.45 [41].
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The tail of the temperature multiplicity function is amplified, 
mostly because of the enhanced formation of large-scale structures.
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LCDM:

Modified-gravity: f(R) 
and K-mouflage
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Figure 2. Left panel: relative deviation of the PDF P(δs) for the f(R) models. Right panel: case
of the K-mouflage model.
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Figure 3. Left panel: relative deviation of the PDF P(F ) for the f(R) models fR0
= −10−4 (red

dashed line) and fR0
= −10−5 (green solid line). The points are the numerical simulations of [14]

for fR0
= −10−4 (red crosses) and fR0

= −10−5 (green circles). The symmetric upper and lower
black dot-dashed lines are the ±1σ relative errors of the observational results of [38]. Right panel:
relative deviation of the PDF P(F ) for the K-mouflage model (blue solid line), with the ±1σ relative
observational errors of [38].

to unity. We recover this behavior in Fig. 2. We find that for the modified-gravity scenarios
that we consider in this paper P(δs) only deviates by a few percents for typical IGM density
contrasts.

We show in Fig. 3 the relative deviation of P(F ) for the f(R) theories and the K-
mouflage model. As in the numerical simulations [14], in all cases we set the coefficient A in
Eq.(3.2) so that the mean flux matches the observed value of [38], ⟨F ⟩ = 0.72. As for the
density PDF shown in Fig. 2, the amplification of structure formation in the modified-gravity
scenarios leads to stronger tails for P(F ), and therefore to a lower amplitude of the PDF
at the moderate values around ⟨F ⟩. For the f(R) theories we roughly recover the order of
magnitude and the shape of the deviation found in the numerical simulations [14]. As the
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Figure 1. Left panel: probability distribution function P(δs) from (3.5) (red solid line labeled
“ϕs”). We also display the Gaussian PDF from linear theory (blue dotted line “L”) and a lognormal
approximation (green dashed line “ln”). Right panel: Probability distribution function P(F ) from
(3.4). The data points are the observational results of [38].

and we take for the latter its value derived in the rare-event or low-variance limit, see [36, 37].
On the other hand, to be consistent with the approach we use for the Lyman-α power spec-
trum, we compute the smoothed variance σ2

s from the truncated Zeldovich power spectrum
defined in Eq.(4.2) below. This means that δs is the IGM density field associated with the
IGM power spectrum (4.1). It differs from the underlying nonlinear matter distribution by
the smoothing scale xs and by the use of the truncated Zeldovich approximation, which pro-
vides a reasonable description of the large-scale weakly nonlinear matter distribution while
removing the irrelevant contributions from high-density virialized halos that do not contribute
to the Lyman-α forest.

We compare in the left panel in Fig. 1 the PDF (3.5) with the Gaussian PDF from linear
theory and the lognormal approximation. We can see that on these mildly nonlinear scales,
the density fluctuations of the IGM are modest but the PDF already significantly deviates
from the Gaussian, with a peak at a slightly negative density contrast and an extended high-
density tail. As is well known, this shape is similar to the usual lognormal approximation.

Next, the mapping (3.2) provides the flux PDF through eq.(3.4). We can see in the right
panel in Fig. 1 that this gives a reasonably good agreement with the observations from [38].

3.2 P(δs) and P(F ) for modified-gravity theories

We show in Fig. 2 the relative deviation of the PDF (3.4) from the LCDM prediction for
the f(R) theories and the K-mouflage model. Here, we keep the same generating function
ϕs and only take into account the dependence of the variance σ2

s on the modified-gravity
scenario. This should be sufficient for our purposes as we consider scenarios that remain
close to General Relativity and the Lyman-α forest probes moderate density fluctuations
that should be mostly governed by the variance σ2

s . The modified-gravity scenarios studied
in this paper amplify the growth of density perturbations at low redshifts. This increases
the variance σ2

s and makes structure formation appear further advanced than in the LCDM
cosmology. This leads to stronger tails for the PDF P(δs), as large fluctuations are less rare,
and hence to lower values of P(δs) for moderate contrasts δs ≃ 0 as all PDF are normalized
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Figure 2. Left panel: relative deviation of the PDF P(δs) for the f(R) models. Right panel: case
of the K-mouflage model.
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dashed line) and fR0
= −10−5 (green solid line). The points are the numerical simulations of [14]

for fR0
= −10−4 (red crosses) and fR0

= −10−5 (green circles). The symmetric upper and lower
black dot-dashed lines are the ±1σ relative errors of the observational results of [38]. Right panel:
relative deviation of the PDF P(F ) for the K-mouflage model (blue solid line), with the ±1σ relative
observational errors of [38].

to unity. We recover this behavior in Fig. 2. We find that for the modified-gravity scenarios
that we consider in this paper P(δs) only deviates by a few percents for typical IGM density
contrasts.

We show in Fig. 3 the relative deviation of P(F ) for the f(R) theories and the K-
mouflage model. As in the numerical simulations [14], in all cases we set the coefficient A in
Eq.(3.2) so that the mean flux matches the observed value of [38], ⟨F ⟩ = 0.72. As for the
density PDF shown in Fig. 2, the amplification of structure formation in the modified-gravity
scenarios leads to stronger tails for P(F ), and therefore to a lower amplitude of the PDF
at the moderate values around ⟨F ⟩. For the f(R) theories we roughly recover the order of
magnitude and the shape of the deviation found in the numerical simulations [14]. As the
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B- 1D power spectrum
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Figure 7. Left panel: ratio PδF (k, µ)/PL(k) for µ = 0.125, 0.375, 0.625 and 0.875, from bottom
to top. The symbols are the results of numerical simulations [39]. Right panel: logarithmic power
spectrum ∆2

δF
along the line of sight and perpendicular to the line of sight.
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Figure 8. Logarithmic 1D power spectrum ∆2
δF ,1D. The data points are observations from [53]

(circles) and [54] (stars). The solid line is our model.

This also defines the 1D logarithmic power as ∆2
δF ,1D(k) = (k/π)PδF ,1D(k), which we compare

with observations [53, 54] in Fig. 8. In agreement with Fig. 7, we recover the broad shape of the
observed 1D Lyman-α power spectrum. The amplitude itself is not predicted, as the bias bδF is
fitted to these observations. The lack of power at high k, k ! 0.015 s/km suggests some tension
between the observations and the numerical simulations [39], as increasing the power at high k
of the model would then worsen the agreement with the numerical simulations shown in Fig. 7.
We do not tune our model to fit better the observations, to keep a reasonable agreement with
both simulations and observations. This is likely to give a more robust framework. A more
accurate modeling would require detailed comparisons between observations and simulations
to better understand the different physical effects that enter the transformation from the
linear matter density power spectrum to the Lyman-α power spectrum.
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1D Lyman-alpha power spectrum along the line of sight

velocity dispersion, which we take to be Gaussian with the comoving wave number cutoff

kth =
aH

bth
, bth =

√

kBT

2mp
, (4.6)

where bth is the thermal velocity dispersion [47]. The factor 1/(1 + f |kµ|/kNL) describes
the smoothing by the velocity dispersion due to the virialization of collapsed structures. On
nonlinear scales, beyond kNL, shell crossing appears and different velocity streams coexist
at the same physical space location x. This must again damp the redshift-space power
spectrum. The factor f expresses that this damping appears earlier when the linear velocity
perturbations are amplified with respect to the linear density field. The factor (1 + βµ2)2

is the usual Kaiser effect [48], which describes that on large linear scales the single-stream
velocity field amplifies the density perturbations, as matter is moving inward onto overdense
regions. We simply take β ≃ 1.3 f , where f(k, a) is the linear growth rate defined in Eq.(4.3).
In principles, the factor β is defined as β = fbδF ,η/bδF ,δ, where we distinguish the biases
with respect to the linear density and velocity fields, bδF ,δ = ∂δF /∂δ and bδF ,η = ∂δF /∂η,
with η = −(∂v∥/∂x∥)/(aH) [39, 49]. However, we found that the analytical models for
bδF ,δ and bδF ,η [49, 50] do not fare very well. They do not improve the agreement with
numerical simulations and are not very stable, in particular the large inaccuracies on bδF ,η

can lead to artificially large or small values for β. This agrees with the results of [50], who
pointed out that velocity effects and redshift-space distortions are very difficult to capture
by simple analytical models. Therefore, we keep the simple expression (??), which appears
to be more robust. This agrees with numerical simulations, which find β ∼ 1.3f at redshift
z ≃ 3 [39]. The prefactor b2δF is fitted to the observations. Apart from direct hydrodynamical
simulations, an alternative would be to simulate the density and velocity fields associated with
the truncated Zeldovich approximation. which allows a more accurate treatment of thermal
and redshift-space distortions [41]. However, as we only wish to estimate the magnitude of
the impact of modified-gravity theories, for simplicity we keep the analytical model (4.4). For
precise measurements, one should in any case develop dedicated hydrodynamical simulations
[42, 51, 52].

We show in the left panel in Fig. 7 the ratio of the Lyman-α power spectrum to the
linear matter density power spectrum, at redshift z = 3 as a function of the wave number
k, for several values of µ. In agreement with Eq.(4.4), higher values of µ (i.e. directions
increasingly parallel to the line of sight) amplify the power spectrum on large scales, because
of the Kaiser effect, and damp the power on small scales because of the µ-dependent cutoffs,
due to the smoothing by the velocity dispersion that arises from the thermal distribution
and the gravitational multistreaming. The agreement with the numerical simulations [39] is
not perfect, as expected for such a simple model as (4.4), but we recover the main trends
and the magnitude of these redshift-space distortions. This suggests that our model captures
the main processes at work. We show in the right panel in Fig. 7 the logarithmic power
spectrum, ∆2

δF
= 4πk3PδF (k, µ) for µ = 1 and µ = 0. In agreement with the left panel, the

redshift-space distortions amplify the power at low k but give rise to a steeper falloff at high
k.

The expression (4.4) gives the anisotropic 3D Lyman-α power spectrum, over all direc-
tions of k. The observed 1D power spectrum along the line of sight is given by the standard
integral

PδF ,1D(kz) =

∫ ∞

−∞
dkxdkyPδF (k) = 2π

∫ ∞

kz

dk kPδF (k, µ = kz/k). (4.7)
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Figure 10. Left panel: relative deviation from the LCDM prediction of the 1D Lyman-α power
spectrum at z = 3 given by f(R) theories, with fR0

= −10−4 (red dashed line), −10−5 (green solid
line) and −10−6 (blue dotted line). The points are the numerical simulations of [14] for fR0

= −10−4

(red crosses) and fR0
= −10−5 (green circles). The symmetric upper and lower black dot-dashed lines

are the ±1σ relative errors of the observational results of [54]. Right panel: case of the K-mouflage
model.

on the cosmology. The modest value of the deviation from the LCDM cosmology and the
lack of salient features suggest that the Lyman-α power spectrum is not a competitive tool to
constrain these f(R) theories, which are already strongly constrained by astrophysical probes
and Solar System tests of gravity that imply |fR0

| ! 10−6. Thus, it appears that to obtain
useful constraints on these scenarios one needs to reconstruct the 3D power spectrum, shown
in Fig. 9, which shows a stronger scale dependence and a higher magnitude for the peak of
the deviation from the LCDM power spectrum.

For the K-mouflage model, the 1D Lyman-α flux power spectrum shows a smooth relative
deviation that slowly decrease with k. This is because of the scale independence for the
relative deviation of the linear matter power spectrum, due to the zero mass of the scalar
field, while at high k nonlinear effects come into play that somewhat damp the dependence
of the flux power spectrum on the underlying linear power spectrum. The comparison with
the 1σ relative error of the observational results of [54] indicates that a precise analysis could
constrain K-mouflage models at the level of βK ! 0.1. This can be compared for instance with
CMB and background constraints, which give βK ! 0.2 [55]. Therefore, in contrast with the
case of the f(R) theories, the Lyman-α power spectrum could provide competitive constraints
for these models. This is partly due to their different screening mechanisms. In the case of
K-mouflage models, the nonlinear screening that ensures convergence to General Relativity
in the Solar System has not impact on weakly nonlinear cosmological scales (because this
corresponds to different regimes of the kinetic function K(χ) that are not necessarily related),
and the tests of gravity in the Solar System or astrophysical environments only imply βK ! 0.1
(provided K ′(χ) is sufficiently large in the small-scale quasistatic regime). However, obtaining
competitive constraints would require a more accurate modeling, or at least a comparison with
a set of K-mouflage numerical simulations to check the accuracy of our modeling, which we
leave to future works. In addition, the comparison with the case of the f(R) theories shows
that the shape of the relative deviation of the Lyman-α flux power spectrum can provide
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CONCLUSIONS



Light scalar fields involved in modified-gravity theories must be screened in the Solar System 
to satisfy very tight observational bounds.

There are 3 main mechanisms:
- chameleon
- Damour-Polyakov
- Kmouflage/Vainshtein

They operate in different manners, so that the screening transition appears at different scales 
and densities and behaves in different ways. 

Observational probes can put constraints on these models and distinguish between 
the screening mechanisms.

- formation of cosmological structures (amplification/decrease of gravity)
- impact on velocity fields
- difference between dynamical and lensing mass (look for clusters of galaxies)
- violations of the equivalence principle
- non-universal coupling (baryons - dark matter)

- speed of gravitational waves
- time dependence of Newton’s constant (and of the Hubble expansion rate)
- scalar waves generated by catastrophic events (supernovae) could make screening 
unefficient and be detected ?

Screening does not remove all modifications to gravity:



ADDITIONAL 
ITEMS



I-  QUANTUM  CORRECTIONS

There exists a classical regime where quantum corrections are small. 
Moreover, the operators of the classical Lagrangian are not renormalized. 
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scalar. This means that in the perturbative approach which
provides the power spectrum (91), up to one-loop order, we
only include the factor !ðk;"Þ which modifies the linear
matrixO in Eq. (68) and we neglect the new quadratic and
cubic vertices #s

2;11 and #
s
2;111. Next, in the computation of

the spherical collapse which provides the linear density
threshold $LðMÞ, we use the same linearization in $R,
which corresponds to the weak-field expression (108) for
the fifth force. In other words, the ‘‘no-chameleon’’ case
corresponds to using the linear approximation in $% for the
fifth force, i.e. truncating the expansion (52) at n ¼ 1, [but
$% itself is nonlinear, in the sense of the expansion (80)].

The ‘‘with-chameleon’’ case corresponds to keeping the
fully nonlinear constraint equation (3). In the perturbative
approach at one-loop order, this means that we include the
new quadratic and cubic vertices #s

2;11 and #s
2;111, in addi-

tion to the linear kernel !, in the equation of motion (67).
(As noticed in Sec. III C 1, the cubic vertex #s

2;111 can

actually be neglected at this order, but not the quadratic
vertex #s

2;11.) In the spherical-collapse dynamics we solve

the exact nonlinear constraint equation (106).
We can see in Fig. 13 that our approach is able to

reproduce reasonably well the deviations from the
!CDM power spectrum up to k$ 3h Mpc%1. In particu-
lar, it captures both the dependence on fR0

and the impact
of the chameleon mechanism. We do not have simulation
results on small scales, to which we may compare our
predictions, and the agreement may deteriorate at higher
k. Indeed, on small scales the power spectrum is sensitive
to the shape of the halo profiles and their mass-
concentration relation, which are expected to be modified
at some level as compared to !CDM. Then, if these
changes are large enough they cannot be neglected as in

this paper, if one is interested in small scales. On the other
hand, it may be possible to improve our modelization if one
could build a reliable model to predict such modifications
to halo profiles.
As compared with the parametrized post-friedmann ap-

proximation introduced in Ref. [53], which interpolates
between the linear regime, where the modification of grav-
ity is taken into account at the linear level without the
chameleon effect, and the nonlinear regime where one uses
the !CDM prediction, our framework does not introduce
additional interpolation parameters. Moreover, the conver-
gence to general relativity on smaller scales is obtained by
explicitly taking into account the chameleon mechanism
(at one-loop order in the perturbative regime and exactly in
the spherical dynamics used in the one-halo term).
Therefore, the rate of convergence is truly governed by
this nonlinear effect—which depends on the modified
gravity model—rather than by an independent parametri-
zation which requires some tuning (on the coefficient cnl or
the function "2ðkÞ that enter the interpolation [38,53]).
In any case, the comparison with Fig. 3 shows that our

simple approach, which combines one-loop perturbation
theory with the halo model, is already able to go signifi-
cantly beyond the perturbative regime. Indeed, the range of
the agreement with the simulations increases from k$ 0:2
to k$ 3h Mpc%1 at least, as we go from Fig. 3 to Fig. 13.
This is especially important as most of the signal occurs on
the mildly nonlinear scales k$ 1h Mpc%1. Moreover,
smaller, highly nonlinear scales suffer from other sources
of uncertainties, which already appear in the !CDM
case, due to the inaccuracy of the halo profiles and
concentrations, and to the impact of the baryon physics.

B. Scalar-tensor models

We show our results for the deviation from !CDM of
the nonlinear power spectrum for dilaton models at z ¼ 0
in Fig. 14. Although we only have results from simulations
which use the fully nonlinear Klein-Gordon equation (14),
as in Fig. 13 for the fðRÞ theories, we plot both our
‘‘no-screening’’ and ‘‘with-screening’’ predictions.
Again, the ‘‘no-screening’’ result corresponds to truncat-

ing the expansion (52) at n ¼ 1, that is, using the linear
approximation in $% of the fifth force or the linearized
Klein-Gordon equation. This approximation is used for
both the perturbative one-loop power spectrum and the
spherical-collapse threshold $LðMÞ.
The ‘‘with-screening’’ result solves the exact nonlinear

Klein-Gordon equation (113) in the spherical collapse. In
the perturbative part, we consider the results obtained
when we only include the new quadratic vertex #s

2;11 (in

addition to the linear factor !), or both the quadratic
and cubic vertices #s

2;11 and #s
2;111 (higher-order vertices

do not contribute at one-loop order). Indeed, as seen in
Sec. III C 2, in contrast with the case of fðRÞ theories, the
cubic vertex #s

2;111 is not negligible on perturbative scales.
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FIG. 13 (color online). Relative deviation from !CDM of the
power spectrum in fðRÞ theories, at redshift z ¼ 0, for n ¼ 1 and
fR0

¼ %10%4, %10%5, and %10%6. In each case, the triangles

and the squares are the results of the ‘‘no-chameleon’’ and
‘‘with-chameleon’’ simulations from Ref. [25], respectively.
We plot the relative deviation of the nonlinear power spectrum
without the chameleon effect (w.f., dotted lines) and with the
chameleon effect (n.l., solid lines).
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A) Deviations from LCDM on cosmological scales

Cosmological structures may probe the transition to the screening domain.

Deviation of the matter power spectrum 
on cosmological scales, for f(R) models.

cubic

f(z) =
d lnD+

d ln a

✏2 =
d ln Ā

d ln a
⇠ �2�2

K 0
power spectrum

halo mass function

K-mouflage models can reach a 10% deviation in the power spectrum on non-linear scales 
and few percents on linear scales.

The large-mass tail of the halo mass function shows large deviations. This is expected 
as K-mouflage does not screen clusters.

These properties are different from what happens for the Vainshtein mechanism (large clusters are 
screened) and for chameleons such as f(R) (where GR is recovered on large scales).  

Deviation of the halo mass function, 
for K-mouflage models.

II-  OBSERVATIONAL PROBES



B) Deviations from GR on small scales

Screening ensures that the 5th force is much smaller than Newtonian gravity.

However, small deviations can still produce non-negligible effects, 
for instance for the K-mouflage model:

anomalous perihelion of the Moon around the Earth:

|�✓| < 2⇥ 10�11

Williams et al. (Class. Quant. Grav. 29, 
184004, 2012)
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small force that does not behave as 1/r^2 orbit does not close

One obtains:

The only way of satisfying the perihelion bound is to suppress K’’ in the Solar System.
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C) Speed of gravitational waves

Many more complex models (e.g. galileons) give a speed       for gravitational 
waves that is different from the speed of light    .

cT
c

If               observed cosmic rays should have decayed away into gravitons 
by Cherenkov-like emission.

Detections of optical counterparts to gravitational waves sources would
rule out models that give cT 6= c

cT < c

A multi-messenger event gives: �t ⇠
⇣cT

c
� 1

⌘ d

200Mpc

10

17
seconds

Will (2014)


