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Motivations



: : - dark ener
Accelerated expansion of the Universe == &7

- modified gravity

Most of the models involve one or more scalar fields, which experience self-interactions
and may also interact with matter.

== “Fifth force” that has not been seen in local gravity experiments !
- the scalar field does not interact with baryonic matter components

- there is a mechanism to suppress the fifth force in local environments

==  “Screening” mechanisms associated with non-linearities of the system.

Khoury (1011.5909)



Two approaches:

- Focus on the cosmological behavior and on low-order (linear) perturbation theory.

One may study specific models or build general frameworks (EFT) that apply to
a large class of theories. Gubitosi, Piazza & Vernizzi (JCAP 032,2013 )

The cosmological regime may be decoupled from the small-scale regime.

- Look for explicit models that make sense from local to cosmological scales.

One needs to specify the model and its nonlinear screening mechanism. Combining
Solar System and cosmological tests can provide strong constraints on the model.

Gravity acts on all scales: it would be nice to have unified scenarios
(or at least to see how one can build unified models).




Deviations from Newton’s law are parametrized by

GyM
r

Oy = (1428%"/*)

For long-range forces with large )\ , the tightest constraint
on the coupling 3 comes from the Cassini probe
measuring the Shapiro effect (time delay):

Bertotti et al. (Nature 425, 374,2003)

B2 <4x107°



Violation of the equivalence principle

dt

B
ac —ap
nBCc = ac + ap
Lunar Laser Ranging
MMoon—Barth < 10717 Will (Liv. Rev. Relat. 17, 4,2014) experiment
This experiment also constrains the time variation of |d1n GN‘ < 10712yt

the local Newton’s constant:

Williams et al. (PRL 93,261101,2004)

It also constrains the anomalous perihelion .
of the Moon: 00| <2 x 10~

Williams et al. (Class. Quant. Grav. 29,
184004, 2012)



Scalar-tensor theories



DEFINITIONS

A simple way to modify GR is to introduce 2 metrics:

- the first metric enters the Einstein-Hilbert action (gravitational part) §,.
- the second metric enters the matter action (dynamical part)  g.v

iz, |
S = [ e VG R+ SV 9us) + -

The relationship between these two metrics is set by additional degrees of freedom,
such as a scalar field:

1
Iuv = C(Spa X)g,ul/ —+ D(QD, X)a,uspaz/sp X = _5 a“gpaﬂgp
Bekenstein (1993)

Simple case of a conformal coupling:

2 . ~
TP (90) + Sm(?vbr(ri)ag/ﬂ/) Juv = A2(90) Iuv

/d%\ﬁ

Coupling matter -- scalar field through the _ ;. dlnA
Jordan-metric conformal rescaling




II- GENERAL FEATURES

Newton’s constant becomes time dependent: V20N = 41 A%(3(t))GNO pim

The gravitational potentials seen by matter receive an additional contribution:

ds® = —a*(1 4 2®)dr? + a*(1 — 20)dx? Juv = AQ?]W
- A - A ¢+ v
c1>:foN+57, xp:\pN_% = b A4 U O

dynamical and lensing
masses are different

- If A, hence Gy change too much with time, this can modify BBN and orbits of planets
and stars (binary pulsars and Lunar Ranging exp. testing Equiv. princ.)

|% <0.1 since BBN, therefore A ~1 in these models.

- Screening: we wish to suppress the gradients of the scalar field



Screening mechanisms



Theories with a single nearly massless scalar field on large scales, with second-order
equations of motion. Khoury (1011.5909)

Brax & PV (PRD 90,
= Screening mechanisms may be classified in 3 categories: 023507,2014)

Write the Lagrangian of the scalar fluctuations up to quadratic order as:

L= —Z<§O) (95)% — (;OO) (0p)* — 6(¢o)ﬂi—i5pm

/ l \

Vainshtein / Damour-Polyakov
K-mouflage Chameleon

We can suppress the gradients of the scalar field (in dense environments) by:
- decreasing the coupling to matter = no fifth force
- increasing the mass of the scalar field

== the field is frozen
- increasing the inertia of the scalar field

(prefactor of the kinetic term)

These 3 mechanisms give rise to different behaviors.



Z (o)

: (8(5@)2 . m2(900)

== 2

Chameleon and Damour-Polyakov

2 ¢
(590) 6(900) MP] 5pm

Vainshtein and K-mouflage mechanisms

Z(p) =1 m =0
linear order + quasi-static approximation
Op _ Bl$0)dpm dp __ Bleo)a®dpm _ 28,
Mp, MP2>1 (mz(goo) -+ S—;) Mpy MI%IZ(QOO)kz Z
2
T T o] Z(0)

GR is recovered on large (linear) scales,
outside the Compton radius

Gravity is amplified on smaller scales by
1 4 252

When the linear approximation breaks down:

Small-scale linear regime: ¢ /Mp) ~ 28Uy

the condition for screening, |d¢| ~ |¢ol,
reads as a condition on the
value of Newton’s potential

GR is not recovered on large linear scales

Gravity is amplified by

1+28%/2
=> Sscreening
(0p)? o Lo
Z(p) =1 b(p)L e
(¢) =1+ alp) =5 +b(y) T
K-mouflage Vainshtein
> 2 ‘VQSO‘ > L—2
V| 2 M R
gradient of curvature of
Newton’s potential Newton’s potential




These 3 screening mechanisms appear at different scales and densities (different criteria).
Their effects are different:

- recover GR at large scales (beyond Compton wavelenght) or not
- thin-shell effect or not

- time dependence of Newton’s constant or not

The 5th force is screened because it is:

short range low amplitude

Damour-Polyakov

Chameleon: (dilaton/symmetron): =

damped within a characteristic radius

K-mouflage/
Vainshtein:




CHAMELEON SCENARIO

f(R) theories:  Sgray = /d%\/i Plf( )

This is equivalent to a scalar-tensor theory:

PIR— 5(00) = V()| + Sm (W5, gyuv)

/ d*z/—§

. r_
e~ 20/ VEMe ' Vip) = MP%IR];f/z !

Juv =

290/\/_MP1

Juv

Hu & Sawicki (2007)



Because of the conformal coupling, there is an explicit coupling between matter
and the scalar field. The KG eq. for the scalar field involves the effective potential:

Khoury & Weltman (2004)

Ve (@) = V() + plA(p) — 1] Brax et al. (2012)

Wang et al. (2012)

M4—|—n ~
T)/P|Ca”)/. V(gp) — gpn A(SD) — 6590/MP1
Low density region High density region
Vers(9) Vers(9)
| i/
| A A($)p
...................... V(o)
- .
V”(¢) << 1 — Unscreened V() > 1 — Screened
Mota (2016)

The minimum and curvature of the effective potential depend on the environment.



=

Thin-shell effect: f Khoury & Weltman (2004)
Brax (2016)

In a high-density object like a star, the scalar field becomes short-ranged.
Only the surface of the object where the field has nonzero gradients
contributes to the fifth force.

violation of the
> strong equivalence
principle

Screened and unscreened objects do not
respond in the same fashion to a distant mass



lI- DAMOUR-POLYAKOV SCENARIO Damour & Polyakov (1994)

A) Dilaton models Vet (@) = V(p) + plA(p) — 1]
Typically: V(o) = Vi ) Mp) Alp) =1+ A 2 conformal function
ypIcally: r) = Voe 2M3, has 2 minimum
Low-density region High-density region

Vv
' p(A-1) -----
4| 4| ' .' Vett —— |
3t 3t \ )
> > A
2 2 A
1} 1 .
0 ‘ 0
4 ) 0 ) 4 4 2 0 ) 4
®/Mp, ¢/Mp
~ dlnA
/B f— MPl > O
dp

The coupling depends on the environment.



B) Symmetron models

Typically:  V(p) = —“72g02 + 27
double well

Verr () = £ (1= — p?) * + 3¢

D=

Low-density region

The coupling depends on the environment.

Vet (0) = V() + plA(p) — 1]

conformal function

Alp) =14 5397 .
has 2 minimum

phase transition between low and
high-density regions

High-density region

[ o (A1) -----
Veff - ]

4 2 0 2 4
¢/Mp)

Hinterbichler & Khoury (2010)
Brax et al. (2012)



lll- K-MOUFLAGE SCENARIO

P1R+M4 K(Y)

/d%\ﬁ

In the linear regime the deviations from GR are set by: _

Screening in the non-linear regime: K’ > 1

, de ..( 1 (de)\"\ _
KG: drK<_2/\/l4<dr>>_

- far from the compact object:

d\IfN . 0 dgp
dr 7 dr

—0, K —1

- close to the compact object:

dqjN—)oo, dgp—)oo K' — o
dr dr

BM(< )

Mp\4mr?

+ S (V) A%(9)Fur)

232

K/

Babichev et al. (2009)
Brax &V. (2014)

1

X= "5 Mo dyup

B dp 28%d¥y
Mp, dr K’ dr

gravity amplified by 1+ 237

5th force is negligible



Brax &V. (2014)

M 1/2
K-mouflage radius: Ry = ( ? )
47TMP1M2
Inside Rg = we recover GR

Outside Ry = deviation from GR, gravity is amplified

. dp (1 (do)\7) _ BM(< 1)
No thin-shell effect ! i (‘ M ( dr ) ) T Mpdar?



1V- VAINSHTEIN SCENARIO

The mechanism is similar to the K-mouflage case, except that it relies on the curvature
rather than the gradient.

: . 1 , 0%p 9 I5;
Cubic Galileon model: L(p) = —5(8@ — m(@gp) + ——T
Pl
1/3
We recover GR inside the Vainshtein radius: Ry = ( B?M )
47TMP1A3

Vainshtein (1972)
Deffayet et al. (201 1)

Nicolis, Rattazzi, Trincherini (2009)



K-mouflage



- DEFINITION OF THE MODEL

(K-essence model with universal conformal coupling to matter)

M?2 . 1
S = /d4az /=5 [;RﬂL‘A;((X)] +Sm(¢§n),z42%‘ X=—5a 0" 00up
non-standard non-linear Coupling matter -- scalar field dln A
kinetic function through the Jordan-metric 6 = Mp; g
conformal rescaling ¥
~ 2
Babichev et al. (Int. |. Mod. Phys. D, 18, 2147, 2009) Juv = A%(®) g

Brax & PV (PRD 90, 023507, 2014)

W We recover a cosmological-constant behavior at late times if: x—0: K()~-1+x+..

K’ —> inertia

Y Positive and negative tails: - uniform time-dependent configurations (i.e., background): x >0

The cosmological background and cosmological structures

Good or Bad 7? only probe the positive tail.
ood or Bad ??

- quasi-static configurations (i.e., small-scale

. : . x <0
nonlinear structures): negative tail

Y In Jordan frame the Planck mass depends on time: Gy o< A?



II- COSMOLOGICAL AND SOLAR SYSTEM CONSTRAINTS

A) Cosmological constraints x>0

K'>0, K'+2xK">0 no ghosts, no small-scale instabilities around cosmological background

VXK' (x) = +o00 for x — 400 well-defined cosmology up to high redshift

K'>1 for x> 1 dark energy is subdominant at high z
< |-10% deviation for large-scale structures
3 <0.1
< |0% deviation of Newton’s constant since BBN
B) Small-scale constraints x <0

no small-scale instabilities, well-defined static profile and

K >0 K +2yK" >0
X Cauchy problem

vV—xK'(x) — +o0 for x — —o0 well-defined profile up to high densities



C) Solar System constraints

Rk (M) = \/i—M 3470 AU The Solar System is screened
©
[5{_2/ <1075 Cassini bound on the amplitude of the fifth force
5 <0.1 Lunar Laser Ranging upper bound on the local rate of change of Newton’s constant

= This gives a direct constraint on cosmological structure formation !

Deviations of the linear matter power spectrum cannot be more than few percents.

A very tight constraint comes from the bound on the anomalous perihelion of the Moon:

is the ratio between the fifth-force

d d (€ _ o B2y . )
= [72% (?)] <2x107"  where = Un  MpUx potential and the Newtonian
potential
- 52 XK// 1
We obtain: 60 = -85 7= i < 210

The only way of satisfying the perihelion bound is to suppress K”
in the Solar System.

=



D) Laboratory constraints measures of the Newtonian force

= = 10~* less stringent than Cassini but further in the non-linear regime

E) Models

n

X
X + X"

A family of models that pass all constraints: K'=1+K,

| K* B 1/” 1012
with <01, K,>10% y.< ( o 10 10) K2

*

In particular, the field can behave like a canonically normalized field up to high
redshift (K’=1), giving a maximal deviation from LCDM.

Three models with n=2: (X K.) = (1,10%), (1,10%), (107,10%)
In the next slides we show:

cubic model: Kx)=-1+x+x°
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K-mouflage models can reach a 10% deviation in the power spectrum on non-linear scales
and few percents on linear scales.

The large-mass tail of the halo mass function shows large deviations. This is expected
as K-mouflage does not screen clusters.

These properties are different from what happens for the Vainshtein mechanism (large clusters are
screened) and for chameleons such as f(R) (where GR is recovered on large scales).



lll- COSMOLOGICAL CONSTRAINTS

Benevento et al. (2019)

A) Effects on the Background

In the Jordan frame the Planck mass becomes time dependent (the field is not frozen

to a fixed value)

|€2| =2 X 10_2
AH/H
K-mouflage
shift of the CMB peaks

02 +1)C/2n

drift with redshift of Newton’s constant
deviations from LCDM at the background level (unless tuning)

—— K-mouflage ---= K-mimic
0.201
0.154
0.101
02 0.05
Q)Z 0.004 - - AC;]V/G]V
g SN
—0.051
—0.101
—-0.151
, , , , , , ~0.201___ , R o B
1071 100 10! 102 103 104 10° 1071 100 10! 102 103 104 10°
z z
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........ GR limit £, o = 1078 A e GR limit £5,0=1078
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4-
5 deviation of the amplitude
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2-
1-
0-

101 102 103

Equation (2.23) shows that even within K-mimic models, the background evolution can-
not be completely degenerate with ACDM. Indeed, given a set of cosmological parameters
{0, Qeco, 240, Ho} K-mimic models reproduce the same H(a) of a ACDM model with a
slightly higher matter density.



B) Large-scale power spectra

K-mouflage K-mimic
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C) Parameter constraints
K-mouflage

Constraints on K-mouflage

0.0 N
parameter CMB CMB+CMBL CMB+CMBL+SN+BAO ALL
le2,0] <0.04 <0.04 < 0.04 < 0.042 -0.01 1
YA - - - -
+1.0 +1.0 +0.59 +0.91 _ 70029
au 047024 0.4%5 49 0.31%0731 0.41%0751 &
YU - - — — -0.03 -
m J— J— — J—
Hy 70.11+41 70.3441 70.1+32 71.5133 0017
QU 0.200%5051  0.2867( 63 0.289*0034 0.278 0031 0.05 . . — .
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the best-fit value for the K-mouflage Hj is higher than the one estimated assuming ACDM.
This means K-mouflage models can mitigate the tension between CMB estimates and direct
measurements of Hy via distance ladder, that is found at about 30 in ACDM. CMB and BAO

K-mimic

Constraints on K-mimic
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Figure 7. The marginalized joint posterior for a subset of parameters of the K-mimic model, the
Hubble constant and 0g2%:°. In all three panels different colors correspond to different combination
of experiments, as shown in legend. The darker and lighter shades correspond respectively to the 68%
C.L. and the 95% C.L. regions.

there is now no degeneracy between e and
the Hubble constant, as can be clearly seen from figure 7. The K-mimic model cannot be
used to solve the tension between Planck measurements and distance ladder measurements.



D) Viability regions for the model functions

| M2
S = S (W, A%(0)g,, + / d*x\/—g [%R + M*K(x)

conformal

: : kinetic function
coupling function
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1IV- SPHERICAL COLLAPSE
Define the normalized Lagrangian radius 0 (1) " ( a1/ >1/3 o)
. y — W1 q — — y — —
of a mass shell: a(t)g 1700 Y
d2y 1 dH\ dy Q
—Z _+ (2 (1 S 1)y =
(dIna)? +< T ) dma ~ 2 LT~y =0
no scale dependence in the
unscreened regime,
mass shells are not coupled
Linear density threAshoId relative deviation from LCDM
required to reach A = 200 of the halo mass function

H | | | | | e T

1.65 | cubic —=— ;

P e —

= ;‘EHH’E-/E’/‘E/E/E/E/E/EI_ g
<
|5 “_fk/\/\/‘/
" pirvi
ACDM  -wrevee
1.4 .
0 1 2 3 4 5 6
z MIA M, ]
It is easier to collapse = More massive halos



V- NON-LINEAR MATTER POWER SPECTRUM

Combining |-loop perturbation theory and a halo model, we can estimate
the density power spectrum up to nonlinear scales.

0.45 —
arctan —<— 0.45 R
041 cubic —a— 2=0 I 0.4 | T
0.35 0.35 |
0.3 03
o 025} o 025 |
o vy
0.15 F 0.15 \EL\E \x-"*---x—---><-"'X---9(---9(___*___*___*___ SRRV VR
017 0.1 | z=2 EL\E‘-"E'"'E""E"'E"'E'"E---E--E---E|—--EI---EI---E1---I3---I3
0.05 ¢ 0.05 £(x)
O 1

- Amplification grows with time

- It does not vanish on very large scales (massless scalar field)

- It peaks around the non-linear scale (small scales probe low mass halo and inner profiles)

- The relative deviations are significantly greater (x10) than for background quantities such as H(z)

- The deviations from LCDM decrease rather slowly at higher z



EFFECTS ON CLUSTERS OF GALAXIES

Clusters are not screened: they feel the fifth force.

, S Brax, Rizzo &V
22037 | (PRD 92,043519,2015)

Small effect on halo
concentration
parameter
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== Small effect on dark matter and gas profiles



Small effect on
Mass - Temperature relation

T5000-nocore [keV]

0.0288<z<0.451

2 14 . . . . . . T 1
10 1 10"°
Mgooe [A° M, ]

The tail of the temperature multiplicity function is amplified,
mostly because of the enhanced formation of large-scale structures.
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Vii- LYMAN-ALPHA POWER SPECTRUM

M.White | | o | o A

Spectrum of the light received

from a distant quasar . mm (I\‘

M
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=== zero transmitted flux F



A- PDFs of the density
and of the flux

LCDM:

Modified-gravity: f(R)
and K-mouflage
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B- ID power spectrum LCDM:

LCDM, z=3
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| D Lyman-alpha power spectrum along the line of sight 0.08 |
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CONCLUSIONS



Light scalar fields involved in modified-gravity theories must be screened in the Solar System
to satisfy very tight observational bounds.

- chameleon
There are 3 main mechanisms: - Damour-Polyakov
- Kmouflage/Vainshtein

They operate in different manners, so that the screening transition appears at different scales
and densities and behaves in different ways.

Observational probes can put constraints on these models and distinguish between
the screening mechanisms.

- formation of cosmological structures (amplification/decrease of gravity)

- impact on velocity fields

- difference between dynamical and lensing mass (look for clusters of galaxies)
- violations of the equivalence principle

- non-universal coupling (baryons - dark matter)

Screening does not remove all modifications to gravity:

- speed of gravitational waves

- time dependence of Newton’s constant (and of the Hubble expansion rate)

- scalar waves generated by catastrophic events (supernovae) could make screening
unefficient and be detected ?



ADDITIONAL
ITEMS



- QUANTUM CORRECTIONS

Quantum corrections are negligible in practical cases

There exists a classical regime where quantum corrections are small.
Moreover, the operators of the classical Lagrangian are not renormalized.

Scalar field action = classical K-mouflage Lagrangian + counterterms

Sparel0] = / B Lonre(0) = / B2 [Lotmentent(0) + AL()] Lotnssicar(0) = MUK (x)

Effective action: Frenorm [SO] — /d4$ r£renorm(§0) — /d4ZE [ﬁclassical(gp) + Af(gp)]

: : : . K \?
Classical regime: AL K Leassical 1 P M(K'x)H* ( K”;z)
K’ 1/2
cosmological background: H < 2.3 x 1072 (K'y)'/4 (I_(”X) GeV (Hppn < 107% GeV)
1/2 — N 1/2
astrophysical background: RL > 4.7 x 10720 (?;[—]\3) (K'x)~ /4 (l;?() (RE—sun ~ 1000 AU)
K

= The quantum corrections are negligible in practical cases.



lI- OBSERVATIONAL PROBES

A) Deviations from LCDM on cosmological scales

Cosmological structures may probe the transition to the screening domain.

Deviation of the matter power spectrum Deviation of the halo mass function,
on cosmological scales, for f(R) models. for K-mouflage models.
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FIG. 13 (color online). Relative deviation from ACDM of the
power spectrum in f(R) theories, at redshift z = 0, forn = 1 and
fr, = —107%, —107°, and —107°. In each case, the triangles
and the squares are the results of the ‘“‘no-chameleon” and
“with-chameleon” simulations from Ref. [25], respectively.
We plot the relative deviation of the nonlinear power spectrum
without the chameleon effect (w.f., dotted lines) and with the
chameleon effect (n.l., solid lines).



B) Deviations from GR on small scales

Screening ensures that the 5th force is much smaller than Newtonian gravity.

However, small deviations can still produce non-negligible effects,
for instance for the K-mouflage model:

anomalous perihelion of the Moon around the Earth:

=[5 ()] 7775500
& \ 60| < 2 x 10~

| / / }
_ 5 ln A g / // 4 Williams et al. (Class. Quant. Grav. 29,
B 184004, 2012
Un . = )

€

small force that does not behave as |/r2 — orbit does not close

2 /"
b XK <92x 101 Brax &V, (2015)

One obtains: 00 = —8
"K'K oK =

=== The only way of satisfying the perihelion bound is to suppress K” in the Solar System.



C) Speed of gravitational waves

Many more complex models (e.g. galileons) give a speed ¢ for gravitational
waves that is different from the speed of light C.

If cr < c observed cosmic rays should have decayed away into gravitons
by Cherenkov-like emission.

Detections of optical counterparts to gravitational waves sources would
rule out models that give cr # ¢

: : cr d 17
i ; At~ (- 1) 10 d
A multi-messenger event gives > 200Mpe 0 seconds

Will (2014)



