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Accelerated expansion of the Universe

Accelerated expansion of the Universe

discovered in 1998 (SNe).

Acceleration condition, fluid with an

equation of state:

w = P/ρc2 < −1/3

−→Concept of Dark Energy.

Figure 1: Hubble diagram, credits : N. Wright.

Question : What is the nature of DE ?

−→Standard cosmological model: Cosmological Constant Λ

−→DE fluid ?

−→Modified gravity?
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Models beyond ΛCDM

−→Dynamical dark energy: dark energy density evolving in space and time

(quintessence...).

−→Modified gravity: lift assumptions from General Relativity.
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Measuring the structure of the Universe

−→Two types of theories that can be tested by studying the Large Scale

Structure of the Universe.

−→One of the objectives of the ongoing (DESI) and future (Euclid, LSST

∼ 2022) large surveys.

Figure 2: EUCLID satellite. Figure 3: LSST telescope.
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N-body simulations

−→In the non-linear regime (k & 0.1/Mpc) we can discriminate between dark

energy et modified gravity.

−→N-body simulations needed to obtain precise predictions deep into the NL

regime (but very slow...).

Figure 4: N-body cosmological simulation, snapshots at different redshifts. Credits : Heitmann et al.

(2015).
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Objectives

Study a simple MG model f (R), belonging to the scalar-tensor family.

Objectives:

• Impact of MG on the distribution of matter.

• Explore the space of cosmological parameters.

• Build an emulator for P(k) calibrated on N-body simulations: obtain fast

predictions for the non-linear matter power spectrum.
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The f (R) model

SEH =
c4

16πG

∫
d4x
√−g [R − 2Λ] −→ c4

16πG

∫
d4x
√−g [R + f (R)]

−→New dynamical degree of freedom, scalar field fR = df
dR .

−→Depending on the form of f (R) this model can:

• produce cosmic acceleration,

• satisfy local constraints (”chameleon” screening mechanism) where gravity

is well constrained (laboratory tests, solar system...).
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f (R) gravity - The Hu & Sawicki model (2007)

The Hu & Sawicki model:

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
with m2 ≡ ΩmH2

0

In the high curvature limit (i.e. high density) :

lim
m2/R→0

f (R) ' −c1

c2
m2 +

c1

c2
2

m2

(
m2

R

)n

−−−−−→
m2/R→0

−2Λ

We fix c1/c2 = 6ΩΛ/Ωm to match ΛCDM at high redshift (R →∞).

−→Two remaining free parameters: c1/c
2
2 ∼ fR0 and n.
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N-body simulations in f (R) gravity

N-body cosmological simulations for the Hu & Sawicki model with ECOSMOG

[Li et al. 2012, Bose et al. 2017], modified version of RAMSES [Teyssier 2002].

−→fast f (R) solver but limited to n = 1, only free parameter: fR0 .

−→Multigrid solver for the Poisson eq. + Adaptive Mesh Refinement (AMR)

Simulations:

• BoxSize: (325Mpc/h)3

• # particles: 5123 ∼ 135 million

• Mass resolution: mp ∼ 1010Msunh
−1

• In ΛCDM, at z = 0, P(k) at 1% for k . 2h−1Mpc.

• CPU time: 5− 20 hours on 512 cores (∼ 2− 10 times slower than ΛCDM)

8/22



N-body simulations in f (R) gravity

N-body cosmological simulations for the Hu & Sawicki model with ECOSMOG

[Li et al. 2012, Bose et al. 2017], modified version of RAMSES [Teyssier 2002].

−→fast f (R) solver but limited to n = 1, only free parameter: fR0 .

−→Multigrid solver for the Poisson eq. + Adaptive Mesh Refinement (AMR)

Simulations:

• BoxSize: (325Mpc/h)3

• # particles: 5123 ∼ 135 million

• Mass resolution: mp ∼ 1010Msunh
−1

• In ΛCDM, at z = 0, P(k) at 1% for k . 2h−1Mpc.

• CPU time: 5− 20 hours on 512 cores (∼ 2− 10 times slower than ΛCDM)

8/22



Influence of f (R) on the matter distribution
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Left : Initial spectrum (beginning of the simulation).

Right : Final spectrum (end of the simulation).

−→The spectrum is amplified by f (R) gravity.

−→This amplification is stronger at non-linear scales (k > 0.1).
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Power spectrum boost - comparison with Winther 2020
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Influence of the cosmology on the boost due to f (R)
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−→Increasing the amount of matter (Ωm) or the normalisation of the initial

spectrum (σ8) increases the density.

⇒ Screening of f (R) more efficient ⇒ weaker boost.
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Influence of the cosmology on the boost due to f (R)
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−→The influence of h et ns (and Ωbh
2) on the power spectrum boost is

negligible (< 1%).

⇒ Not necessary to take these parameters into account if we build an emulator

for the boost !
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Building an emulator to predict the effect of f (R)

Emulator: Interpolates between the results of simulations performed for

different cosmological models. An emulator allows us to obtain fast predictions

in the non-linear regime, unlike N-body simulations which are very slow.

Current emulators:

• [Winther 2020]: doesn’t take into account the variation of the cosmology.

• [Ramachandra 2021]: takes into account the cosmology but calibrated using

COLA simulations, less precise than N-body methods.

• [Arnold 2021]: very recent (few weeks ago) more accurate emulator,

complementary to our work.

Objectives :

• Explore the parameter space: {Ωm, σ8, fR0}.
• Build an emulator that predicts the boost P(k)/PΛCDM(k) as a function of

these parameters.
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Latin Hypercube Sampling

−→Example I: each point is randomly

sampled without taking into account

the positions of the other points.

−→Example II: each point is sampled

so that it has no common coordinates

with the already chosen points.

⇒ efficiently samples the parameter

space

−→important in order to minimise the

number of simulations required to build

an accurate emulator.
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Sliced Latin Hypercube Sampling - Ba et. al 2015

−→Modified algorithm of

[Ba 2015]:

• maximises the

distances between

points,

• points distributed in

sub-samples.
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Gaussian Process Regression

Gaussian Process: collection of random variables, any finite subset of which

follow a joint Gaussian distribution.

−→Training data set {y1, ..., yn} at training locations {x1, ..., xn} follow a

probability distribution:

p(y) = N (0,K)

where Kij = k(xi , xj) → kernel function.

−→The kernel function describes how similar is the data at different locations.

Simple example:

kRBF(xi , xj) = exp

(
− (xi − xj)

2

l2

)
−→l is a free hyperparameter (inferred by likelihood maximization).
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Gaussian Process Regression

We want to predict new data y∗ at new locations x∗. We can extract it from

the joint probability distribution:

p(y, y∗) = N (0,Kjoint)

where Kjoint is a function of k(x , x), k(x , x∗), k(x∗, x∗).

−→We use the scikit-learn python library.
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Testing the emulator

• Small average

relative error:

< ε >= 0.3%

• But a few models

fail with large

errors (∼ 1− 5%)
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Testing the emulator
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Reduced testing parameter space

• Very small

average relative

error:

< ε >= 0.1%

• All models within

1% error bars !
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Reduced testing parameter space
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Conclusion

−→We have studied the effect of the different cosmological parameters on the

PS boost due to f (R).

−→We are in the process of building an emulator for the PS boost.

−→We are also studying other quantities: we build a FoF halo catalogue at

each snapshots.

• halo mass function

• halo power spectrum

• RSD (2PCF multipoles)

• halo bias

Long term perspectives:

• Study the effect of n.

• Can we consider and simulate more general MG models ?
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