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How Special Are Black Holes?

Their entropy satisfies the area law: [1]
Area Area

Gy M;?

~v

Decay rate is thermal and they have temperature
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They exhibit a (semiclassical) information horizon.

Time-scale required for beginning of the information retrieval is [2]
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[1] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
[2] D. N. Page, Information in Black Hole Radiation, Phys. Rev. Lett. 71, 3743 (1993).



How Special Are Black Holes?

* Does the area-law entropy bound extend beyond gravity?
 What is its underlying meaning?
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The entropy bound is imposed by unitarity

G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616



Unitarity

Cross-section: Cross—section:
N
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The bound reads
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For self-sustained objects of size R, « = a(q) is as an effective running coupling
evaluated at the scaleqg ~ 1/R,and aN ~ O0(1)



Entropy Bound Imposed by Unitarity

* E.g. consider bound states of Goldstone bosons of de Broglie wavelength R
2
_q_ 1
2~ (R
f is the canonically normalized Goldstone decay constant.
* Thus
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* Ggoog = [ is the Goldstone coupling



Saturons

* We refer to the objects saturating the entropy bounds as Saturons.
* Different saturons are discussed in [1-3]. These include:

* Black Holes, * C(lassical lumps, Instantons, Monopoles...
* Vacuum Bubbles. e Color Glass Condensates
1 Area
* Area law: SMax = 2=
1
 Temperature: T ~ =
. . Volume R
* Information retrieval tmin= = — = Simax
GGold a

e Information horizon.

1. G. Dvali, JHEP03(2021) 126, arXiv:2003.05546, arXiv:2107.10616
2. G. Dvali and O. Sakhelashvili, Black-Hole-Like Saturons in Gross-Neveu, PRD 105 (2022) 6, 065014arXiv:2111.03620.
3. G. Dvali, R. Venugopalan, Classicalization and unitarization of wee partons in QCD and gravity: The CGC-black hole

correspondence PRD 105 (2022) 5, 056026




Saturon as a Vacuum Bubble



Model of a Saturon as a Vacuum Bubble

* We consider d = 4 model of a a 2, ! 2 2]
Vip] == — P2+ —
scalar field ¢ in the adjoint rep. L] 2" [(f¢ ¢ N [ ])

of SU(N), and N > 1 Unbroken Phase:
m = a f

1
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* Unitarity requires a < "

SU(N) » SUN — K)XSU(K)xU(1),



Model of a Saturon as a Vacuum Bubble

* We consider the breaking with

K = 1, and the ansatz 008
) 0.06 |
@ (x) . T |
b7 = diag ((N — 1),—1,...,—1). = ool
NN = 1) ( ) S
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Vacuum Bubbles Stabilization

A Memory Burden Effect



Vacuum Bubbles Stabilization

* Rotate in internal space the ansatz

@(r) .
dp = d N-1),-1,..,—1
D \/N(N 1 148 (( ) )
as
¢ =UTdHU
U = exp|—ifT].

* Here T corresponds to the respective broken generators of SU(N)

0 = wt

* @G. Dvali, O. Kaikov, and J.S. Valbuena B, (2021), PRD 105, 056013 (2022); 2112.00551 [hep-th]



Vacuum Bubbles Stabilization:
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Vacuum Bubbles Stabilization:

t=0 t=0
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Vacuum Bubbles Stabilization:
Quantum picture of classical stability

w m>

Esubble = Eint + Ewan = EE
* In terms of the occupation numbers of the corresponding quanta, the
energies are:

)

E N h N Lm
nt=wN¢, where = ——
Int G ’ G awS
_1m*
Ewan=mN,, where, N,=-——

a w*



Vacuum Bubbles Stabilization:
Quantum picture of classical stability

* A stationary bubble is obtained thanks to the excitations of the
Goldstone mode(s).

* The bubble is stable because of two factors:
1) The fact that the Goldstone SU(N) charge is conserved; and

2) The fact that the same amount of charge in the exterior vacuum
would cost higher energy.

G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEPO3 (2021) 126, arXiv:2003.05546.
G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory, arXiv:1810.02336.
G. Dvali, L. Eisemann, M. Michel, and S. Zell, Universe’s Primordial Quantum Memories, JCAPO3 (2019) 010, arXiv:1812.08749. 15



Vacuum Bubbles Microstates



Vacuum Bubbles Microstates

N; = Ej,,;/w is the total mean occupation number.
Ncoia = 2(N — 1) Goldstone modes (flavors).
N can be arbitrarily redistributed among the N;,;; modes.

2N-1

Z na=NG

a=1

Each sequence represents a

|Pattern) = | n}, n2,...)

above, and the entropy is
Ng

(1+5)

S=Inng = 2N In

The number of degenerate micro-states, ng, is the number of
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satisfying the constraint
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Vacuum Bubbles Microstates

* Thick wall (Small) Bubbles correspond to Saturons
w~m
m ! ~R
1
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S~ Smax ~ E ~ EgubbleR

J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47 18



Information Horizon

Saturons in semiclassical limit



Semi-classical Limit

* The limit in which the classical bubble solution experiences no back
reaction from quantum fluctuations

a— 0, R = finite, w = finite, aN = finite

e Simultaneously
f — oo, m = finite, N — o

* In this limit, saturons possess a strict information horizon.
* Recall: For BH f ~ M,

20



Goldstone Horizon: An Example

* Lets consider a perturbation on
a stable vacuum bubble, ¢y 5,
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p(r) = exp [—e g
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Goldstone Horizon: An Example
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Goldstone Horizon: An Example
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Correspondence to Black Holes



Correspondence to Black Holes

Saturons Black Holes

S =(fR)? =} ¢ S = (MpR)?
eT=R"1 eT=R"1

* tmin = R> f2 = SR * tmin = R3 M3 = SR

* Information/Goldstone Horizon * Information Horizon



Conclusions and outlook

* Black Holes are certainly special but not unique.

* BH belong to a larger class of objects: Saturons, which saturate the
entropy bound.

* We have shown an explicit example of a Saturon as a Vacuum Bubble.

* Vacuum Bubbles exhibit a goldstone horizon, analog to the
information horizon of saturons.

* A large (macroscopic) occupation number of the Goldstone modes
stabilizes the Vacuum Bubbles. This phenomenon is due to the
memory burden effect

[7] G. Dvali, F. Kihnel and M. Zantedeschi, Vortexes in Black Holes, arXiv:hep-th/2112.08354. 26



Conclusions and outlook

* Departures from semi-classical behavior can become observable for
BH that are relatively old and close to their half-decay time.

* The light Primordial Black Holes, provided they exist, can be within a
potentially interesting window.

* Other possible observational consequences for rotating black holes
are discussed in [7]

[7] G. Dvali, F. Kihnel and M. Zantedeschi, Vortexes in Black Holes, arXiv:hep-th/2112.08354.
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Outlook
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Outlook
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Saturation of Unitarity

N ~2>1
a

1\V _1
N[ —= S
0-2—>N nSt ~ (a) e ae
» Exponential suppression of high
occupancy state (classical

lumps), unless

1
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Vacuum Bubbles Micro-state Entropy

Large Bubbles Small Bubbles -> Saturons
w<Km w~m
m~1 &R m~1 ~R
1 1
* Ng > =~ N ~ Ngoia * Ng ~ =~ N~ Ngoia
1> A e1~A1
e 1 m10 1
e S = —) ~=In|— *S~—-~FE R
S~ 2N In (A) —In (wlo) 7~ CBubble
1 m® e S~S
* S5 K Siax s max

[8] J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy
Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47



Memory Burden Vaccum Bubbles
Effect Stabilization

Vs

Large amount of
Memory patterns
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Vacuum Bubbles Stabilization

Large Bubbles Small Bubbles
R~ 12m™! R ~1.02m™!

elf el f

0.6

t/f!
tf

04 04

34



Semi-classical Limit

* |In Semi-classical limit, the effective coupling of a Goldstone mode of
frequency ¢

82
XA = F - (
* At finite f, and ¢ <K m cannot propagate outside the bubble, even though
the coupling a  is finite.
* The energy € is such propagation is impossible due to the finite energy gap.

e £ K m, the perturbation energy can exceed the mass gap at the expense of a large
occupation number n. of Goldstone quanta.

neg — 1,
such a process is exponentially suppressed by afactor e™ "¢



Spectrum
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Spectrum
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Vacuum Bubbles:
Thin Wall ApprOX|mat|on (R>» m™1)
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p(r) = (1 + tanh (m(z ") ))
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