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• Phenomenology determined by one parameter  fa
• Many ongoing experiments try to search for the (QCD) axion

• Strong bounds on   from SN and NS coolingfa
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Axion bound from SN1987A

• Neutrino burst observed in two independent neutrino experiments

•  neutrinos in a time span of  were observed in each experiment 
(today we would observe significantly more if a SN happens close to us)

≈ 10 ≈ 10 sec

• By energy loss arguments additional new particles emitted by the SN would alter the signal 
duration

• This gives a constraint on the emissivity of possible new particles εa ≲ 1 × 1019 erg g−1 s−1

• For the KSVZ axion this corresponds to  ma ≲ 15 meV
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Supernova bound
• axion emission would shorten the neutrino signal —> strong bound on   

• Typical calculations of the axion emissivity just involve tree level diagrams (Brinkmann, 
Turner ’88), those are used to set bounds (see e.g arXiv:0611350 (Raffelt)) 

• At typical SN densities, loop corrections as well as density corrections can play a 
significant role 

• Recent calculation include different corrections, but the calculations are not 
systematic 

• Also density effects are highly relevant for neutron star cooling

fa

 We now calculate this systematically

• First studies have es=mated that the couplings might change by a  factor 
 

𝒪(10) (2003.04903)
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Chiral perturbation theory

• Systematic description of low energy (nuclear) physics

• Degrees of freedom are mesons (and baryons)

• Expansion in powers of p/Λχ

• Gauge bosons and other fields (e.g. axion, neutrino) can be consistently added 
to the theory
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Heavy baryon ChPT + finite density

• Heavy baryon ChPT: non-relativistic limit of ChPT 
• Adding density effects by a modified nucleon propagator: 

(Extension of QFT at finite Temperature by going to the grand canonical Ensemble. Here the propagator is given in the  limit.) 

• Gives a systematic expansion in density 

T → 0

We use this to calculate the one-pion-exchange (OPE) process 
( ) at leading order finite densityN + N → N + N + a

(Tree level OPE process)
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Coupling axion-nucleon (KSVZ)

• Tree level Lagrangian

• Leads to the couplings 

Q: How do they look at finite density?

,

Accidental cancelation!
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Tree level:
Leading contribution:
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From the vertex correction to the emissivity

• Remember from  we set the bound on the constant  εa ≲ 1 × 1019 erg g−1 s−1 fa

• Vertex corrections lead to a the density dependence of  |M |2

• This alters the axion emissivity :·ϵa

·ϵa = ∫ dΠ1dΠ2dΠ3dΠ4dΠa(2π)4S |M |2 δ(4) (p1 + p2 − p3 − p4 − pa) Ea f1 f2 (1 − f3) (1 − f4)

Density dependent
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Mixed nuclear matter (e.g. SN)
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Emissivity - pure neutron matter (e.g. NS)

Pure neutron matter (e.g. NS)
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Summary

• First systematic calculation of axion couplings at finite density

• Density corrections important for bounds on the axion from SN and NS cooling

• First time to obtain a sharp bound on the KSVZ axion mass from NS cooling

• Similar effect expected for DFSZ axion (also astrophobic axions)

• Long term goal: calculate the whole  process @ finite densityN + N → N + N + a


