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QCD axion

« Strong CP problem of QCD: By observations of the neutron EDM the theta parameter is known to be
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« Most elegant solution: QCD axion with shift symmetrya — a + kf
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« Phenomenology determined by one parameter f,

« Many ongoing experiments try to search for the (QCD) axion

« Strong bounds on f, from SN and NS cooling
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« =~ 10 neutrinos in a time span of ~ 10 sec were observed in each experiment
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. This gives a constraint on the emissivity of possible new particles e, $ 1 X 10" ergg™ " s—1

< 15 meV

a4

« For the KSVZ axion this corresponds to m,,
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Supernova bound

axion emission would shorten the neutrino signal —> strong bound on f,

Typical calculations of the axion emissivity just involve tree level diagrams (Brinkmann,
Turner ’88), those are used to set bounds (see e.g arXiv:0611350 (Raffelt))

At typical SN densities, loop corrections as well as density corrections can play a
significant role

Recent calculation include different corrections (e.g. 1906.11844), but vacuum
couplings are used

Density effects are also highly relevant for neutron star cooling
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Supernova bound

. axion emission would shorten the neutrino signal —> strong bound on f, e.q a
n n
« Typical calculations of the axion emissivity just involve tree level diagrams (Brinkmann, E"r
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. axion emission would shorten the neutrino signal —> strong bound on f, e.q a
n n
« Typical calculations of the axion emissivity just involve tree level diagrams (Brinkmann, E"r
Turner ’88), those are used to set bounds (see e.g arXiv:0611350 (Raffelt)) e ——

N N

= -

w w
2 .
(=] (=]
Il Il
= =
—_ —
Z I
< <
~— ~—
—~ —~
= =
~_ ~_
z 4
< <
— =




Chiral perturbation theory

 Systematic description of low energy (nuclear) physics



Chiral perturbation theory

 Systematic description of low energy (nuclear) physics

e Degrees of freedom are mesons (and baryons)



Chiral perturbation theory

 Systematic description of low energy (nuclear) physics
e Degrees of freedom are mesons (and baryons)

« Expansion in powers of p/A,



Chiral perturbation theory

 Systematic description of low energy (nuclear) physics
e Degrees of freedom are mesons (and baryons)
« Expansion in powers of p/A,

e Gauge bosons and other fields (e.g. axion, neutrino) can be consistently added
to the theory
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« Heavy baryon ChPT: non-relativistic limit of ChPT
« Adding density effects by a modified nucleon propagator:

iG(p) = (p+m) | 5 =200 (= m®) 0 (i~ [71) 0 o)

(Extension of QFT at finite Temperature by going to the grand canonical Ensemble. Here the propagator is given in the T — 0 limit.)
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Heavy baryon ChPT + finite density

o Heavy baryon ChPT: non-relativistic limit of ChPT
« Adding density effects by a modified nucleon propagator:

iG(p) = (p+m) [p2 - 'ni? T 2mo (p2 - m2) 0 (kr - |p|) 0 (PO)]

(Extension of QFT at finite Temperature by going to the grand canonical Ensemble. Here the propagator is given in the T — 0 limit.)
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+ Tree level Lagrangian ESK; 5 gANS“uuN n géNS“’&ZN, N = (p,n)T
ud
Cp = t+gac_ + gy C
« Leads to the couplings ) 3d " ct = (cy £cg)/2
Cn = —gAC— + gg Cy
N — —
a 0 * Pa KSVZ
SR A LY () = -047(3) |
. 2fa —) (cn)55V% = —0.02(3) Accidental cancelation!
N
a
o . (cp)n V% = 77
Q: How do they look at finite density? P
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e |nvestigate the temperature dependence

e Nucleon propagator gets modified to account also for the temperature dependence
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Vertex corrections and finite temperature

e |nvestigate the temperature dependence

e Nucleon propagator gets modified to account also for the temperature dependence
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Vertex corrections results including Temperatur

Black: T = ()
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From the vertex correction to the emissivity

. Remember frome, < 1 x 107 erg g™! s-1 we set the bound on the constant f,

H . 2 ,717“
. Vertex corrections lead to a the density dependence of | M | ’p/ M U
4 Pa 3
. . . o e . P+ Da 3
o This alters the axion emissivity € : ’ g — > "

¢, = JdnldHZdH3dH4dHa(2n)4S IM 6 (py +py = ps = P = pa) Eufifa (1= 5) (1 = 1)

Density dependent



Emissivity - proton-neutron matter (e.g. SN)
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Emissivity - pure neutron matter (e.g. NS)
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Consequences for NS cooling

« Axion neutron coupling at finite density is no longer compatible with zero
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Summary

First systematic calculation of axion couplings at finite density

Density corrections important for bounds on the axion from SN and NS cooling

First time to obtain a sharp bound on the KSVZ axion mass from NS cooling

Similar effect expected for DFSZ axion (also astrophobic axions)

Long term goal: calculate the whole N+ N — N 4+ N + a process @ finite density



