Hunting for axions in the solar basin

hep-ph:2205.05700

<u>W. DeRocco</u>,¹ B. Grefenstette,² J. Huang,³ K. Van Tilburg,^{4, 5} S. Wegsman⁴

¹UC Santa Cruz

²Caltech

³Perimeter Institute

⁴New York University

⁵Flatiron Institute

PLANCK 2022

• Introduction: What is a stellar basin?

• Part I: Axions in the solar basin

• Part II: Data and results

• Introduction: What is a stellar basin?

• Part I: Axions in the solar basin

• Part II: Data and results

Motivation

• Stars are well-known to be excellent sources of new particles

Motivation

- Stars are well-known to be excellent sources of new particles
- Most analyses focus on escaping flux

Gravitational trapping

• Low-velocity particles cannot escape gravitational well

7

https://arxiv.org/pdf/2006.12431.pdf

Low-velocity tail

- Low-velocity particles cannot escape gravitational well
- Small fraction of spectrum

Stellar basin

- Low-velocity particles cannot escape gravitational well
- Small fraction of spectrum
- Particles accumulate to form "stellar basin"

• Introduction: What is a stellar basin?

- Stellar basins arise when slow-moving particles trapped on bound orbits accumulate in the gravitational well of a star.
- Part I: Axions in the solar basin

• Part II: Data and results

Outline

• Introduction: What is a stellar basin?

- Stellar basins arise when slow-moving particles trapped on bound orbits accumulate in the gravitational well of a star.
- Part I: Axions in the solar basin

• Part II: Data and results

Model

Indirect detection

- Low-velocity particles cannot escape gravitational well
- Particles accumulate to form "stellar basin"
- Axions produced in solar core accumulate around the Sun for ~ axion lifetime
- Decay to two photons is observable

Decay signatures: energy spectrum

- Signal maximized at $m_a \sim$ temperature of solar core
 - Lower mass harder to trap
 - Higher mass Boltzmannsuppressed
- Axions decay near rest
- X-ray line at ~ keV energy

Decay signatures: spatial template

Decay signatures: spatial template

- Integrated line of sight doubles at solar limb
- Characteristic $\theta^{-3} \propto R^{-4}$ falloff
- Profile with ~ arcminscale features

 $\theta \equiv$ angle from solar center

Outline

• Introduction: What is a stellar basin?

• Stellar basins arise when slow-moving particles trapped on bound orbits accumulate in the gravitational well of a star.

• Part I: Axions in the solar basin

- Axions can collect in the Solar basin and decay to two photons, producing a characteristic signal.
- Part II: Data and results

Outline

• Introduction: What is a stellar basin?

• Stellar basins arise when slow-moving particles trapped on bound orbits accumulate in the gravitational well of a star.

• Part I: Axions in the solar basin

- Axions can collect in the Solar basin and decay to two photons, producing a characteristic signal.
- Part II: Data and results

NuSTAR specs

- Orbital X-ray telescope
- Energy:
 - 3 78 keV
 - ~200 eV resolution
- Angular resolution
 - ~0.3 arcmin

19

ittps://www.astro.utah.edu/~wik/courses/astr5590spring

Backgrounds

- Background well-characterized
- Dominant background in relevant range due to stray X-rays entering detector (aperture)
- Solar lines are subdominant

NuSTAR solar observations

- Recent quiescent limb dwells (September 2020)
- Low contamination from localized flares
- Orbit 2, CHU12 configuration
 - Least spatial variability
 - Avoids SAA deadtime
 - Longest continuous CHU configuration

Limit-setting

Method	Requires signal model	Does not require background model	Uses spectral information	Uses spatial information	Not computationally intensive
Poisson	~	\checkmark	Х	Х	\checkmark
CLs	~	Х	\checkmark	\checkmark	~
Yellin (optimum interval)	~	\checkmark	\checkmark	\checkmark	X

- **Poisson:** For total number of observed events, how large can signal be?
- **CL**_s: For best signal and background model, how large can signal be?
- Yellin: For the largest underdensities in the data, how large can signal be?

Results: universal coupling

- Universal coupling relates photon and electron couplings
- Yellin clearly outperforms
 Poisson
- CL_s places strongest constraint at higher mass

Results: photon-only coupling

- Electron coupling taken to zero = production via Primakoff
- Yellin clearly outperforms
 Poisson
- CL_s places strongest constraint at higher mass

Outline

• Introduction: What is a stellar basin?

• Stellar basins arise when slow-moving particles trapped on bound orbits accumulate in the gravitational well of a star.

• Part I: Axions in the solar basin

• Axions can collect in the Solar basin and decay to two photons, producing a characteristic signal.

• Part II: Data and results

• Multiple limit-setting methodologies constrain couplings well below an order of magnitude beneath existing bounds.

Thank you for listening!

BACKUP

Production

- Electron coupling
 - Compton scattering: dominates for $m_a > 5$ keV
 - **Electron-ion bremsstrahlung:** • contributes at $m_a < 5 \text{ keV}$

- Photon coupling
 - Primakoff process:

dominates for $\frac{g_{a\gamma\gamma}}{GeV^{-1}} \gtrsim 10^3 g_{aee}$

a

Stellar basin

• Long accumulation time!

 $\begin{aligned} \rho_b(r) &\sim \dot{\rho_b}(r) \tau \\ &\Rightarrow \rho_b \left(r \right) \gg \rho_{DM} \end{aligned}$

• Even for kyr accumulation times, this region in parameter space exceeds ρ_{DM}

Radial scaling

Formation of a basin

• Accumulation phase: axions are slowly accumulated for a basin lifetime

Formation of a basin

- Accumulation phase: axions are slowly accumulated for a basin lifetime
 - Lifetime set by axion decays $\tau_{\rm lifetime} = \Gamma_{\rm decay}^{-1}$
- Steady-state phase: axion decay rate matches injection rate

Full parameter space

- Low electron coupling: Primakoff dominates
- Low photon coupling: decay longer than age of solar system (accumulation phase)
- Very high electron coupling: loop-coupling to photons dominates the decay

Data analysis strategies

• Poisson limit

• CL_s limit

Poisson limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit

Poisson limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit

CL_s limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit

CL_s limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit
 - Need signal and background models
 - Find maximal signal that is constrained for any parameters of background model
- Yellin limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit
 - Need signal **and** background models
 - Find maximal signal that is constrained for any parameters of background model
- Yellin limit

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit
 - Need signal **and** background models
 - Find maximal signal that is constrained for any parameters of background model
- Yellin limit
 - Change coordinates so signal model is uniform

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit
 - Need signal **and** background models
 - Find maximal signal that is constrained for any parameters of background model
- Yellin limit
 - Change coordinates so signal model is uniform

- Poisson limit
 - Integrate all data to get total counts
 - Data is signal + background → expected signal counts cannot be more than total counts
- CL_s limit
 - Need signal **and** background models
 - Find maximal signal that is constrained for any parameters of background model
- Yellin limit
 - Change coordinates so signal model is uniform
 - Look for largest deviations from uniformity in data

Comparison

- Poisson limit
 - Pro: simple
 - Con: no spatial information
- CL_s limit
 - Pro: powerful
 - Con: need background model
- Yellin limit
 - Pro: works within unknown background
 - Con: computationally intensive

