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• Introduction: What is a stellar basin?
• Stellar basins arise when slow-moving particles trapped on bound orbits 

accumulate in the gravitational well of a star.

• Part I: Axions in the solar basin
• Axions can collect in the Solar basin and decay to two photons, 

producing a characteristic signal.

• Part II: Data and results
• Multiple limit-setting methodologies constrain couplings well below an 

order of magnitude beneath existing bounds.
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• Stars are well-known to 
be excellent sources of 
new particles
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Motivation
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• Stars are well-known to 
be excellent sources of 
new particles

• Most analyses focus on 
escaping flux
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Gravitational trapping
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• Low-velocity particles 
cannot escape 
gravitational well
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Low-velocity tail
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• Low-velocity particles 
cannot escape 
gravitational well

• Small fraction of 
spectrum
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Stellar basin
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star
basin

• Low-velocity particles 
cannot escape 
gravitational well

• Small fraction of 
spectrum

• Particles accumulate to 
form “stellar basin”
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Model
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Mass near 
temperature 
of solar core 

Production by 
electrons in 
solar core

Decay to two 
photons/
Primakoff
production
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Indirect detection

SUN
axions

photons
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• Low-velocity particles 
cannot escape 
gravitational well
• Particles accumulate to 

form “stellar basin”
• Axions produced in solar 

core accumulate around 
the Sun for ~ axion 
lifetime
• Decay to two photons is 

observable



Decay signatures: energy spectrum

• Signal maximized at !" ~ 
temperature of solar core
• Lower mass harder to trap
• Higher mass Boltzmann-

suppressed

• Axions decay near rest

• X-ray line at ~ keV energy
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Decay signatures: spatial template
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• Integrated line of sight 
doubles at solar limb

• Characteristic 
!"# ∝ %"& falloff

• Profile with ~ arcmin-
scale features

SUN

axions

photons



Decay signatures: spatial template
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! ≡ angle from solar center

solar limb

• Integrated line of sight 
doubles at solar limb

• Characteristic 
!#$ ∝ &#' falloff

• Profile with ~ arcmin-
scale features
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NuSTAR specs

• Orbital X-ray telescope

• Energy: 
• 3 - 78 keV
• ~200 eV resolution

• Angular resolution 
• ~0.3 arcmin
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https://heasarc.gsfc.nasa.gov/docs/nustar/nustar_tech_desc.html

X-rays



Backgrounds

• Background well-characterized

• Dominant background in relevant 
range due to stray X-rays entering 
detector (aperture)

• Solar lines are subdominant
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NuSTAR solar observations

• Recent quiescent limb 
dwells (September 2020)

• Low contamination from 
localized flares

• Orbit 2, CHU12 
configuration
• Least spatial variability
• Avoids SAA deadtime
• Longest continuous CHU 

configuration
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Limit-setting
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Method Requires 
signal 
model

Does not require 
background model

Uses spectral 
information

Uses spatial 
information

Not 
computationally 
intensive

Poisson ~ ✓ X X ✓
CLs ~ X ✓ ✓ ~

Yellin (optimum 
interval)

~ ✓ ✓ ✓ X

• Poisson: For total number of observed events, how large can signal be?
• CLs: For best signal and background model, how large can signal be?

• Yellin: For the largest underdensities in the data, how large can signal be?



Results: universal coupling
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• Universal coupling relates 
photon and electron 
couplings

• Yellin clearly outperforms 
Poisson

• CLs places strongest 
constraint at higher mass



Results: photon-only coupling
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• Electron coupling taken to 
zero = production via 
Primakoff

• Yellin clearly outperforms 
Poisson

• CLs places strongest 
constraint at higher mass
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• Introduction: What is a stellar basin?
• Stellar basins arise when slow-moving particles trapped on bound orbits 

accumulate in the gravitational well of a star.

• Part I: Axions in the solar basin
• Axions can collect in the Solar basin and decay to two photons, 

producing a characteristic signal.

• Part II: Data and results
• Multiple limit-setting methodologies constrain couplings well below an 

order of magnitude beneath existing bounds.



Thank you for listening!
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BACKUP
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Production

• Electron coupling
• Compton scattering: 

dominates for ma > 5 keV
• Electron-ion bremsstrahlung: 

contributes at ma < 5 keV

• Photon coupling
• Primakoff process: 

dominates for 
!"##
$%&'( ≳ 10,-.%%
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Stellar basin
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• Long accumulation time!

• Even for kyr
accumulation times, this 
region in parameter 
space exceeds !"#
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Radial scaling
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energy injected 
into basin (per 
volume per time)

typical energy 

fraction that turn 
around in shell
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Formation of a basin

• Accumulation phase: axions 
are slowly accumulated for a 
basin lifetime
• Lifetime set by axion decays

• Steady-state phase: axion 
decay rate matches injection 
rate

accumulation
phase

sun
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sun

Formation of a basin

• Accumulation phase: axions 
are slowly accumulated for a 
basin lifetime
• Lifetime set by axion decays

• Steady-state phase: axion 
decay rate matches injection 
rate
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Full parameter space

• Low electron coupling:
Primakoff dominates

• Low photon coupling: decay 
longer than age of solar 
system (accumulation phase)

• Very high electron coupling: 
loop-coupling to photons 
dominates the decay
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Data analysis strategies

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data

33

Expected signal

Actual data

?



Poisson limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Expected signal

Actual data



Poisson limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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à Nsignal < Ndata



CLs limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Actual data



CLs limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Expected signal

Actual data
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Yellin limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Yellin limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Yellin limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Yellin limit

• Poisson limit
• Integrate all data to get total counts
• Data is signal + background à

expected signal counts cannot be more 
than total counts

• CLs limit
• Need signal and background models
• Find maximal signal that is constrained 

for any parameters of background 
model

• Yellin limit
• Change coordinates so signal model is 

uniform
• Look for largest deviations from 

uniformity in data
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Rescaled data

MC samples of pure signal



Comparison

• Poisson limit
• Pro: simple
• Con: no spatial information

• CLs limit
• Pro: powerful
• Con: need background model

• Yellin limit
• Pro: works within unknown background
• Con: computationally intensive
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