Unified Emergence of Energy Scales and Cosmic Inflation

Jonas Rezacek Max-Planck-Institut für Kernphysik, Heidelberg

Based on 2012.09706 (Jisuke Kubo, Jeff Kuntz, Manfred Lindner, J. R., Philipp Saake, Andreas Trautner)

2nd June 2022 Planck Conference Paris

Introduction

Scale invariance

Classical action invariant under rescalings

$$g_{\mu\nu} \to e^{2\sigma} g_{\mu\nu} \,, \quad \Phi \to e^{-w_\Phi \sigma} \Phi$$

• Symmetry of SM at high energies: $E \gg m_i$

Introduction

Scale invariance

Classical action invariant under rescalings

$$g_{\mu\nu} \to e^{2\sigma} g_{\mu\nu} \,, \quad \Phi \to e^{-w_\Phi \sigma} \Phi$$

- Symmetry of SM at high energies: $E \gg m_i$
- CMB power spectrum $n_S \sim 1$ [Planck '18]

Introduction

Scale invariance

Classical action invariant under rescalings

$$g_{\mu\nu} \to e^{2\sigma} g_{\mu\nu} \,, \quad \Phi \to e^{-w_\Phi \sigma} \Phi$$

- Symmetry of SM at high energies: $E \gg m_i$
- CMB power spectrum $n_S \sim 1$ [Planck '18]

• If scale invariance broken by scale anomaly, M_{PI} and v_{EW} exponentially separated and radiatively stable if: no intermediate scales [Bardeen '95] [Meissner, Nicolai, hep-th/0612165]

Contents

The scale-invariant model and symmetry breaking

Inflation

The Model

$$\begin{split} \frac{\mathcal{L}_{\rm CW}}{\sqrt{-g}} &= \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma - \frac{1}{4} \lambda_S S^4 - \frac{1}{4} \lambda_\sigma \sigma^4 - \frac{1}{4} \lambda_{s\sigma} S^2 \sigma^2 \\ \frac{\mathcal{L}_{\rm GR}}{\sqrt{-g}} &= -\frac{1}{2} (\beta_S S^2 + \beta_\sigma \sigma^2 + \beta_H H^{\dagger} H) R + \gamma R^2 + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta} \\ \frac{\mathcal{L}_{\rm SM}}{\sqrt{-g}} &= \mathcal{L}_{\rm SM}|_{\mu_H=0} - \frac{1}{4} (\lambda_{HS} S^2 + \lambda_{H\sigma} \sigma^2) H^{\dagger} H \\ \frac{\mathcal{L}_N}{\sqrt{-g}} &= \frac{i}{2} \overline{N_R} \not{\partial} N_R - \left(\frac{1}{2} y_M S \overline{N_R} (N_R)^c + y_\nu \bar{L} \tilde{H} N_R + \text{h.c.} \right) \end{split}$$

(Additional scalar sector for Coleman-Weinberg mechanism ($\langle S \rangle = v_S$)

- **②** Gravity with global scale invariance (identifcation of $M_{\rm Pl}$ and inflation)
- SM interactions + Higgs portals
- type-I seesaw (also inducing Higgs mass)

Dimensional transmutation

Coleman-Weinberg mechanism [Coleman, Weinberg '73]

e.g. massless sQED
$$V_{\text{eff}}(\varphi) = \frac{\lambda}{4!}\varphi^4 + 3\frac{(g\varphi)^4}{64\pi^2} \left[\log\left(\frac{(g\varphi)^2}{\mu^2}\right) - \frac{5}{6} \right]$$

 $\mathcal{O}(\lambda) \sim \mathcal{O}(g^4) \rightarrow \langle \varphi \rangle \neq 0$

Dimensional transmutation

Coleman-Weinberg mechanism [Coleman, Weinberg '73]

e.g. massless sQED
$$V_{\text{eff}}(\varphi) = \frac{\lambda}{4!}\varphi^4 + 3\frac{(g\varphi)^4}{64\pi^2} \left[\log\left(\frac{(g\varphi)^2}{\mu^2}\right) - \frac{5}{6}\right]$$

 $\mathcal{O}(\lambda) \sim \mathcal{O}(g^4) \rightarrow \langle \varphi \rangle \neq 0$

Approximation tool for multi-scalar potential: Gildener-Weinberg approach [Gildener, Weinberg '76]

$$V_{\text{tree}}(S,\sigma) = \frac{1}{4} \left(\lambda_S S^4 + \lambda_\sigma \sigma^4 + \lambda_{s\sigma} S^2 \sigma^2 \right) + \frac{1}{4} (\lambda_{HS} S^2 + \lambda_{H\sigma} \sigma^2) H^{\dagger} H$$

Desired flat direction $(S \neq 0, \sigma = 0)$ for $\lambda_S \ll \lambda_{S\sigma}$ and $\lambda_S \ll \lambda_{\sigma}$

SSB of scale invariance

$$\frac{\mathcal{L}_{\rm GR}}{\sqrt{-g}} = -\frac{1}{2} (\beta_S S^2 + \beta_\sigma \sigma^2 + \beta_H H^{\dagger} H) R + \gamma R^2 + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta}$$

• Coleman-Weinberg potential in background $\sigma=0,\ S\neq 0$ and $R\neq 0:$

$$U_{\rm eff}(S,R,\sigma) = \frac{\lambda_S}{4}S^4 + \frac{\lambda_{\sigma}}{4}\sigma^4 + \frac{\lambda_{S\sigma}}{4}S^2\sigma^2 + \frac{1}{64\pi^2} \left(\tilde{m}_s^4 \ln[\tilde{m}_s^2/\mu^2] + \tilde{m}_{\sigma}^4 \ln[\tilde{m}_{\sigma}^2/\mu^2]\right)$$

SSB of scale invariance

$$\frac{\mathcal{L}_{\rm GR}}{\sqrt{-g}} = -\frac{1}{2} (\beta_S S^2 + \beta_\sigma \sigma^2 + \beta_H H^{\dagger} H) R + \gamma R^2 + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta}$$

• Coleman-Weinberg potential in background $\sigma=0,\ S\neq 0$ and $R\neq 0:$

$$U_{\rm eff}(S,R,\sigma) = \frac{\lambda_S}{4}S^4 + \frac{\lambda_\sigma}{4}\sigma^4 + \frac{\lambda_{S\sigma}}{4}S^2\sigma^2 + \frac{1}{64\pi^2} \left(\tilde{m}_s^4\ln[\tilde{m}_s^2/\mu^2] + \tilde{m}_\sigma^4\ln[\tilde{m}_\sigma^2/\mu^2]\right)$$

• During Inflation $\sigma=0,\ \beta_S R<3\lambda_S S^2$ and $\beta_\sigma R<(1/2)\lambda_{S\sigma}S^2$

$$\tilde{U}_{\text{eff}}(S,R) = U_{\text{eff}}(S,R,0) - U_0 = U_{\text{CW}}(S) + U_{(1)}(S)R + U_{(2)}(S)R^2 + \mathcal{O}(R^3)$$

SSB of scale invariance

$$\frac{\mathcal{L}_{\rm GR}}{\sqrt{-g}} = -\frac{1}{2} (\beta_S S^2 + \beta_\sigma \sigma^2 + \beta_H H^{\dagger} H) R + \gamma R^2 + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta}$$

• Coleman-Weinberg potential in background $\sigma=0,\ S\neq 0$ and $R\neq 0:$

$$U_{\rm eff}(S,R,\sigma) = \frac{\lambda_S}{4}S^4 + \frac{\lambda_{\sigma}}{4}\sigma^4 + \frac{\lambda_{S\sigma}}{4}S^2\sigma^2 + \frac{1}{64\pi^2} \left(\tilde{m}_s^4 \ln[\tilde{m}_s^2/\mu^2] + \tilde{m}_{\sigma}^4 \ln[\tilde{m}_{\sigma}^2/\mu^2]\right)$$

• During Inflation $\sigma=0,\ \beta_S R<3\lambda_S S^2$ and $\beta_\sigma R<(1/2)\lambda_{S\sigma}S^2$

 $\tilde{U}_{\text{eff}}(S,R) = U_{\text{eff}}(S,R,0) - U_0 = U_{\text{CW}}(S) + U_{(1)}(S)R + U_{(2)}(S)R^2 + \mathcal{O}(R^3)$

Subtracting induced cosmological constant

$$U_{\rm CW}(S=v_S)=0$$
, $U_0=-\mu^4 \frac{\beta_{\lambda_S}}{16} \exp\left[-1-16C/\beta_{\lambda_S}\right]$

• Identification of Planck mass: $M_{\rm Pl} = v_S \sqrt{\beta_S + 2U_{(1)}(v_S)/v_S^2}$ For inflation $\beta_S \sim 10^{(2-3)} \Rightarrow v_S \sim 10^{(16-17)}$ GeV

Contents

2 The scale-invariant model and symmetry breaking

Inflation

Effective action for inflation

 $\begin{array}{l} \text{Jordan frame:} \ \frac{\mathcal{L}_{\text{eff}}}{\sqrt{-g_J}} = -\frac{1}{2}B(S)R_J + G(S)R_J^2 + \frac{1}{2}g_J^{\mu\nu}\partial_\mu S\partial_\nu S - U_{\text{CW}}(S) \\ \text{Einstein frame:} \ \frac{\mathcal{L}_{\text{eff}}^E}{\sqrt{-g}} = -\frac{M_{\text{Pl}}^2}{2}R + \frac{1}{2}g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi + \frac{1}{2}e^{-\sqrt{2/3}\frac{\phi}{M_{\text{Pl}}}}g^{\mu\nu}\partial_\mu S\partial_\nu S - V(S,\phi) \end{array}$

Effective action for inflation

 $\text{Contour } \mathcal{C} = \{S, \tilde{\phi}(S)\} \rightarrow \frac{\mathcal{L}_{\text{eff}}^e}{\sqrt{-g}} = -\frac{1}{2} M_{\text{Pl}}^2 R + \frac{1}{2} F(S)^2 g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S - V_{\text{inf}}(S)$

Slow-roll approximation

• Potential slow-roll parameters

$$\varepsilon(S) = \frac{M_{\rm Pl}^2}{2 F^2(S)} \left(\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)}\right)^2$$
$$\eta(S) = \frac{M_{\rm Pl}^2}{F^2(S)} \left(\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)} - \frac{F'(S)}{F(S)}\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)}\right)$$

Slow-roll approximation

$$\varepsilon(S) = \frac{M_{\rm Pl}}{2F^2(S)} \left(\frac{V_{\rm inf}(S)}{V_{\rm inf}(S)}\right)$$
$$\eta(S) = \frac{M_{\rm Pl}^2}{F^2(S)} \left(\frac{V_{\rm inf}''(S)}{V_{\rm inf}(S)} - \frac{F'(S)}{F(S)}\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)}\right)$$

• CMB observables

$$A_s = \frac{V_{\inf}(S_*)}{24\pi^2 \,\varepsilon(S_*) \,M_{\rm Pl}^4} \,, \quad n_s = 1 + 2\,\eta(S_*) - 6\,\varepsilon(S_*) \,, \quad r = 16\,\varepsilon(S_*)$$

Inflation results

• Free parameters in
$$V_{inf}$$
 :
$$\begin{cases} \lambda_{\sigma}, \lambda_{S} \\ \beta_{\sigma}, \beta_{S} \\ \gamma \end{cases}$$

 $\begin{cases} \lambda_S, \boldsymbol{\lambda_{S\sigma}} & \text{tree-level potential} \\ \beta_{\sigma}, \boldsymbol{\beta_S} & \text{non-minimal couplings} \\ \boldsymbol{\gamma} & R^2 - \text{coefficient} \end{cases}$

Inflation results

• Scalar amplitude constraint [Planck 2018]

Inflation results

Contents

2 The scale-invariant model and symmetry breaking

Inflation

How to connect the Planck and EW scale?

• New approach to hierarchy problem: Neutrino Option

[Brivio, Trott, 1703.10924]

How to connect the Planck and EW scale?

How to connect the Planck and EW scale?

How to connect the Planck and EW scale?

Fine-tuning

$$\mathcal{L} \supset \frac{i}{2} \overline{N_R} \not \partial N_R - \left(\frac{1}{2} y_M S \overline{N_R} (N_R)^c + y_\nu \bar{L} \tilde{H} N_R + \text{h.c.} \right) - \frac{1}{4} (\lambda_{HS} S^2 + \lambda_{H\sigma} \sigma^2) H^{\dagger} H$$

Induced Majorana mass (Yukawa coupling fixed by Planck scale and inflation)

$$\begin{split} m_N &= y_M \, v_S \simeq 10^7 \, \text{GeV} \qquad \text{(neutrino option)} \\ y_M &= \frac{m_N \beta_S^{1/2}}{M_{\text{Pl}}} \simeq 10^{-10} \left(\frac{\beta_S}{10^3}\right)^{1/2} \end{split}$$

• $y_M
ightarrow 0$ technically natural (U(1)_{B-L} restored) ['t Hooft '80]

Fine-tuning

$$\mathcal{L} \supset \frac{i}{2} \overline{N_R} \not \partial N_R - \left(\frac{1}{2} y_M S \overline{N_R} (N_R)^c + y_\nu \bar{L} \tilde{H} N_R + \text{h.c.} \right) - \frac{1}{4} (\lambda_{HS} S^2 + \lambda_{H\sigma} \sigma^2) H^{\dagger} H$$

• Induced Majorana mass (Yukawa coupling fixed by Planck scale and inflation)

$$m_N = y_M v_S \simeq 10^7 \text{ GeV}$$
(neutrino option)
$$y_M = \frac{m_N \beta_S^{1/2}}{M_{\text{Pl}}} \simeq 10^{-10} \left(\frac{\beta_S}{10^3}\right)^{1/2}$$

• $y_M
ightarrow 0$ technically natural (U(1) $_{B-L}$ restored) ['t Hooft '80]

• Another contribution to the Higgs mass

$$\begin{split} \lambda_{HS}S^2(\boldsymbol{H}^\dagger\boldsymbol{H}) &\to \lambda_{HS}v_S^2(\boldsymbol{H}^\dagger\boldsymbol{H}) \\ \Delta\lambda_{HS} &\sim y_\nu^2 y_M^2/16\pi^2 \end{split}$$

- $\lambda_{HS} \ll 1$ but not fine-tuned to special value
- $\{\lambda_{HS}, \lambda_{H\sigma}, y_M\} \sim 0$ stable under RG (in absence of gravity)

Summary & conclusion

- Classically scale invariant model with dynamical generation of all scales
- VEV $v_S = 10^{16-17}~{
 m GeV}$ generates Planck scale $M_{
 m Pl} pprox eta_S^{1/2} v_S$
- Inflation predictions consistent with Planck observations
- Majorana mass scale $M_N = y_M v_S \sim 10^7 \text{ GeV}$
- Higgs mass realized by neutrino option (+ light active neutrinos)

Thank you!

Inflation

$$U_{\text{eff}}(S,R,\sigma) = \frac{\lambda_S}{4}S^4 + \frac{\lambda_\sigma}{4}\sigma^4 + \frac{\lambda_{S\sigma}}{4}S^2\sigma^2 + \frac{1}{64\pi^2} \left(\tilde{m}_s^4 \ln[\tilde{m}_s^2/\mu^2] + \tilde{m}_\sigma^4 \ln[\tilde{m}_\sigma^2/\mu^2]\right)$$
$$\tilde{m}_s^2 = 3\lambda_S S^2 + \beta_S R$$
$$\tilde{m}_\sigma^2 = \frac{1}{2}\lambda_{S\sigma}S^2 + \beta_\sigma R$$

Inflaton potential

$$V(S,\phi) = e^{-2\sqrt{2/3}\frac{\phi}{M_{\rm Pl}}} \left[U_{\rm CW}(S) + \frac{M_{\rm Pl}^4}{16\,G(S)} \left(B(S) - e^{\sqrt{2/3}\frac{\phi}{M_{\rm Pl}}} \right)^2 \right]$$
$$B(S) = \beta_S S^2 + 2U_{(1)}(S) \,, \quad G(S) = \gamma - U_{(2)}(S)$$

Contours

$$\begin{array}{c|c} \mathbf{C} = \{S, \tilde{\phi}(S)\} & \text{where} & \left. \frac{\partial V(S, \phi)}{\partial \phi} \right|_{\phi = \tilde{\phi}(S)} = 0 \,, \quad V_{\inf}(S) = V(S, \tilde{\phi}(S)) \\ \\ & \rightarrow \frac{\mathcal{L}_{\text{eff}}^E}{\sqrt{-g}} = -\frac{1}{2} \, M_{\text{Pl}}^2 R + \frac{1}{2} \, F(S)^2 \, g^{\mu\nu} \, \partial_\mu S \, \partial_\nu S - V_{\inf}(S) \\ \\ \mathbf{O} \quad \mathcal{C}' = \{\tilde{S}(\phi), \phi\} \,, \quad \text{where} \quad \left. \frac{\partial V(S, \phi)}{\partial S} \right|_{S = \tilde{S}(\phi)} = 0 \,, \quad V_{\inf}(\phi) = V(\tilde{S}(\phi), \phi) \end{array}$$

Inflationary observables

Power spectrum of adiabatic and Gaussian scalar fluctuations

$$\langle \mathcal{RR} \rangle = (2\pi)^3 \delta(k+k') P_{\mathcal{R}}(k), \quad \Delta_s^2(k) = \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k)$$

$$\Delta_s^2(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s(k_*)-1} \quad \begin{cases} A_s \\ n_s \\ k_* \end{cases}$$

scalar power spectrum amplitude scalar spectral-tilt pivot scale

Tensor perturbations (sum of two polarizations: h_x, h_+)

$$\Delta_t^2(k) = A_t(k_*) \left(\frac{k}{k_*}\right)^{n_t(k_*)} \left\{ r = \frac{\Delta_t^2}{\Delta_s^2} \quad \text{tensor-to-scalar ratio} \right\}$$

Slow-roll approximation

Potential slow-roll parameters

$$\varepsilon(S) = \frac{M_{\rm Pl}^2}{2 F^2(S)} \left(\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)}\right)^2 \eta(S) = \frac{M_{\rm Pl}^2}{F^2(S)} \left(\frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)} - \frac{F'(S)}{F(S)} \frac{V_{\rm inf}'(S)}{V_{\rm inf}(S)}\right)$$

• End of inflation

$$\varepsilon(S = S_{end}) = 1$$
 or $|\eta(S = S_{end})| = 1$

• Field value at horizon crossing S_{\ast} fixed by e-folds $N_{e}=50-60$

$$N_e = \int_{t_*}^{t_{end}} H dt = \int_{S_*}^{S_{end}} \frac{dS}{\sqrt{2\varepsilon(S)}}$$

CMB observables

$$A_s = \frac{V_{\text{inf}}(S_*)}{24\pi^2 \,\varepsilon(S_*) \,M_{\text{Pl}}^4} \,, \quad n_s = 1 + 2\,\eta(S_*) - 6\,\varepsilon(S_*) \,, \quad r = 16\,\varepsilon(S_*)$$

Inflation

Inflation

20 / 15

Figure 3: Values of the parameters λ (left) and $\sqrt{m_{\pi}^2}$ (right) extrapolated at the scale $\mu = m_{\pi}$ as a function of the two seesawe parameters M and ω respectively, in the preliminary study of Ref. [1]. The dashed lines and surrounding bands indicate the values consistent with the measured Higgs mass within $\pm 1\sigma$ [15]. Left panel: the red line assumes $m_{\pi} = 173.2$ GeV and the orange band corresponds to varying m_{π} between 171 and 175 GeV. Right panel: the solid red line assumes $M = 10^{-5}$ GeV. The grey region is disfavoured by the Λ CDM cosmology limit $\sum m_{\pi} \leq 0.23$ eV. The three solid lines indicate, for reference, the sum of metriton masses predicted, in eV.

Figures taken from [Brivio, 1904.07029]

Neutrino option

Figures taken from [Brdar et al, 1807.11490]