Heavy warm dark matter from supercooling

Iason Baldes In collaboration with Yann Gouttenoire and Filippo Sala

Planck, Paris, 1 June 2022

Non-Cold Dark Matter

- Planck Collab. 1807.06205

High speed DM at late times \rightarrow suppression of small scale structure

DM Velocity

- IB et al. 2004.14773

Can be used as a proxy for other scenarios. Future constraint m_{WDM} ~ 10 keV.

Examples

- DM from evaporating PBHs e.g. Fujita et al. 1401.1909
- **2** Inflaton Decay Ballesteros et al. 2011.13458
- **3** Freeze-in e.g. Ballesteros et al. 2011.13458
- **4** Super-WIMP Decay e.g. Decant et al. 2111.09321

Question

Can we get Non-Cold DM from a phase transition?

Also see Monday's talk by Christian Döring (2107.10283) for an alternative way a PT can affect structure.

Phase Transition

Particles gaining a mass during a $PT \rightarrow$ boosted in the plasma frame.

 $\mathcal{L} \supset \lambda \phi^2 X^2$

Can we use this to get NCDM? No, due to small $m_{DM}/T_{\rm RH}$.

Problems:

- **DM** does not get a large enough momentum kick unless $\lambda \gg 1$.
- **2** DM comes back into kinetic equilibrium after the PT.
- Simplest idea didn't work.
- We need to go to a slightly more complicated DM scenario.
- \bullet Eventually we get $m_{DM} \sim 10^8$ GeV Non-Cold DM from a FOPT.

DM production

Instead produce DM at the wall - Azatov, Vanvlasselaer, Yin 2101.05721

$$
\mathcal{L} \supset \frac{1}{2} m_{\rm DM}^2 X^2 + \frac{1}{4} \lambda \phi^2 X^2
$$

We can have $m_{\text{DM}} \gg \langle \phi \rangle \sim m_{\phi}$.

Probability

$$
P(\phi \to X + X) = \frac{\lambda^2 v_\phi^2}{96\pi^2 m_{\rm DM}^2} \qquad \text{for} \quad \gamma_{\rm wp} \sim \frac{T_n M_{\rm Pl}}{T_{\rm RH}} \gtrsim \frac{L_w m_{\rm DM}^2}{T_n}
$$

Assuming zero initial abundance (possible because $m_{DM} \gg T_{RH}$):

$$
Y_{\text{DM}} \approx \frac{\lambda^2 v_{\phi}^2}{m_{\text{DM}}^2} \left(\frac{T_n}{T_{\text{RH}}}\right)^3 \simeq \frac{0.43 \text{ eV}}{m_{\text{DM}}}
$$

Two solutions possible for Ω_{DM} .

• Rad Dom:
$$
T_n \simeq T_{\text{RH}} > T_{\text{infl}}
$$
.

2 Vac Dom:
$$
T_{\text{RH}} \simeq T_{\text{infl}} > T_n
$$
.

In a subset of parameter space late time velocity of DM also large.

DM velocity

From $\gamma_{\rm DM} \approx m_{\rm DM}/T_n$ one finds

$$
v(t_{\rm eq}) \approx \frac{T_\gamma^{\rm eq} \, m_{\rm DM}}{T_{\rm RH} \, T_n}
$$

This is compared to the limit $\mathit{v}(t_{\rm eq}) \lesssim 10^{-4}$ from standard WDM models.

We need to avoid momentum loss

$$
n_{\phi}\sigma(X\phi\to X\phi)\mathsf{v}_{\mathrm{rel}}\frac{\delta p_{\mathrm{DM}}}{p_{\mathrm{DM}}}=n_{\phi}\frac{\lambda^2}{16\pi\hat{s}}
$$

 \bullet Large \hat{s} helps us.

• For
$$
T \lesssim m_{\phi} \approx T_{\text{RH}}
$$
, $n_{\phi} \propto \text{Exp}[-m_{\phi}/T]$.

Phase transition during radiation domination.

Phase transition during vacuum domination.

Phase transition during vacuum domination.

Gravitational Waves

 $f_{\text{peak}} \propto T_{\text{RH}}$

The ϕ can decay via a portal $\mathcal{L} \supset - \lambda_{h\phi} \phi^2 |H|^2$.

These can also sap DM momentum. However it is easily possible to have $\lambda_{h\phi}$ small enough to avoid this while allowing for rapid ϕ decay.

Conclusion

- Using Azatov/Vanvlasselaer/Yin production mechanism showed non-cold DM from a PT is possible.
- Generic signal: $\Omega_{\rm GW}$ peaked towards the IR of the LISA sensitivity together with suppression of small scale structure.
- Crucial: ϕ not charged under a gauge symmetry.
- Z_2 for ϕ should be broken to avoid domain walls.
- If Z_2 for X also broken we get some indirect detection.
- **O** Unobservable via direct detection.