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Gravitational wave astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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Gravitational wave astronomy

Masses in the Stellar Graveyard
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Could new physics make neutron stars heavier?

Could these be fat zombies in the stellar graveyard?




A SIMPLE EXAMPLE

Consider non-interacting Fermi gas of neutrons
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A SIMPLE EXAMPLE

Consider non-interacting Fermi gas of neutrons
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A SIMPLE EXAMPLE

Consider non-interacting Fermi gas of neutrons

0.7
TN 2 ‘
— Mmax i 07 ( > M® 0.6
m lc i
5 0.5
my \ 2 S
— Rmax ~ 10 ( N) km SZ‘ - 0.4
T \';03
... but what if neutrons where lighter? °
R — —_— OOO T s 0 s s
j | Rys el ’ km
- m Smy/3 — O(10) effect! | ()

So why is that? At fixed energy density need more neutrons ¢y =mp



BASIC IDEA
Take axion like particle —

... with neutron interaction




BASIC IDEA

Take axion like particle [ V(¢) = —A* (cos (¢/f) — 1)

... with neutron interaction

O¢N:gT;LNNNCOS (?) with 1>¢g>0

Note, this is not the derivative coupling to neutrons
Y 5
0, aNvy"~y° N
But present in vanilla QCD Axion, which we can map to

|
g=-2N ~0.025 A4 mZ [z

Y

2mN A




BASIC IDEA

At zero density py =0

V(¢a Ps = O)




BASIC IDEA

This has 2 effects
1) At finite densities the potential is

o) (cos (6/f) = 1) (NN) = o=

V(g px) = — (A4

This also happens for the QCD axion with

1 2 £2
g — 5 ON ~ (.025 A4 m’]‘(‘ T
TN 4

P



BASIC IDEA

This has 2 effects

1) At high densities (NN) >

gmnpy

V(e, ps)

~ -
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o
‘-——'

not optimal...



BASIC IDEA

This has 2 effects

. - — 2A* . . -
1) At high densities (NN) > . the field ¢ is destabilized!
N
< _
< CQ==m
~ want to be here!
~ See - ” Y ~ ~ - -‘— ’ . &




QCD axion:
Balkin, Serra, KS, Weiler
JHEP 07 (2020) 221

a.k.a axion sourcing
bubble formation



QCD axion:
Balkin, Serra, KS, Weiler
JHEP 07 (2020) 221

a.k.a axion sourcing
bubble formation

But this is only one way!



QCD axion:
Balkin, Serra, KS, Weiler
JHEP 07 (2020) 221

a.k.a axion sourcing
bubble formation

The ALP comes with a lot of energy and couples to neutrons

This talk!
Balkin, Serra, Stelzl, KS, Weiler 22xx.xxxx



BASIC IDEA

This has 2 effects

2) We can write our operator Oyn = gT;LN NN cos (?)

as an effective neutron mass my =muy |1+ % (cos(¢/f) — 1)

N my(l—g) ¢=m

What happens to the neutron star in this phase?



ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion [V, gravity and the ALP

Lne = v/=G | N (ig" 9Dy —miy(6)) N + 26" (0,0)(0,0) — V(0)]




ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion [V, gravity and the ALP

Lno = v/=5 | N (ig" 2D, ~RB) N + 29" (0,0)(0,0) ~ V(0)]
| j |

ALP neutron interaction




ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion [V, gravity and the ALP

Lo = V=3 | N (ig"~.D, - ) - 9" (0:)(0,9) ~ @)




ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion [V, gravity and the ALP

Lro =77 | N (ig"7.D, RO N + 20" (0,0)(0.0) - F@)

ALP neutron interaction ALP self-interaction }

Outside the dense object

oV (¢)
99 g,

— 0 V(gpg) =0 my(¢o) = mn



ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion [V, gravity and the ALP

Lno = v/=G | (ig" 2D, ~R@) N + 29 (0,0)(0,0) —FB) |

ALP neutron interaction ALP self-interaction }

Outside the dense object

Tl =0 Ve =0 miy(6e) =my
oly

Effectively decoupled



ALP-FERMION-GRAVITY SYSTEM

5S 68

Minimising the action _ Y
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ALP-FERMION-GRAVITY SYSTEM

5S 68

Minimising the action _ Y
59;“/ 0¢

0

.

coupled system

/ fermion, gravity, scalar

can be solved numerically, very technical

Luckily, there is a simplifying limit!



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Assume scale hierarchy

Scale of the system Scale of ¢

R >  aAp—-_1
\/Epot

Epot = gMN P — 2A4



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Assume scale hierarchy

Scale of the system W Scale of ¢

R > AR= 1
\/Epot

Can forget about the scalar gradient: ¢'(r) = 0

Epot = gMN P — 2A4

This is very nice because now the system is effectively decoupled!



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Assume scale hierarchy

Scale of the system Scale of ¢

- R > AR = f
\/Epot

Can forget about the scalar gradient: ¢'(r) = 0

Epot = gMN P — 2A4

1 The opposite limit: prevents sourcing in nuclei




EQUATION OF STATE

Oe S | e(p, @) = en(p, 9) + V(o)
0% — () minimising the potential energy 208 = (o, &) — V(@)

ov Omy ()
95 ps(p, P) 90
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EQUATION OF STATE

Oe S | e(p, @) = en(p, 9) + V(o)
0% — () minimising the potential energy 208 = (o, &) — V(@)

(Z“; - ps(p, ) 8mg\qu(¢) =0 —» ¢(/0)




EQUATION OF STATE

Oe o | e(p, @) = en(p, 9) + V(o)
0% — () minimising the potential energy b0 8) = par(0.8) — V(@)

d | ,03(/07 ¢) 8mg\qu(¢) =0 —» ¢(p)

&
8(,0) ' p(p) = p(E) equation of state




EQUATION OF STATE

Oc

— = (0 minimising the potential energy

0

e(p, @) =enl(p,¢) + V(o)
p(pv ¢) — pN(ﬂ? ¢) o V(¢)

o p(E) equation of state

p/ _ (p -+ 5)
8mr2M?
M' = 47r7°26,

M \! ,
47TT'MP21) (47TT P M) ’



EQUATION OF STATE

What kind of EOS do we get? There are 2 competing effects

. . e = const. = miyp
1) Mass reduction mpy < mpy stiffens the EOS Y
MmN

2
s Mo ~ 0.7 (—) M.,
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EQUATION OF STATE

What kind of EOS do we get? There are 2 competing effects

. . e = const. = miyp
1) Mass reduction mpy < mpy stiffens the EOS Y
my

2
s Mo ~ 0.7 (—) M.,

™m

2) Vacuum energy V(’]‘(‘) — 2A?% softens the EQS additional energy density gravitates



ENERGY PER PARTICLE

Difference between NGS and CE region

p = ,02 a(;éﬂ)

New ground state: {A1, g}

e/p < myn forsome p
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e At lower densities, energy density dominated by myp

e Can even reach less energy per particle as well
separated ordinary neutrons!

 Nucleons want to be at finite density!

— Free fermi gas

— Stable ----- Unstable




ENERGY PER PARTICLE

Difference between NGS and CE region

p = ,02 a(;éﬂ)

New ground state: {A1, g}

e/p < mpy forsome p
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e At lower densities, energy density dominated by myp

e Can even reach less energy per particle as well
separated ordinary neutrons!

 Nucleons want to be at finite density!

Coexistence: {A,, g}

— Free fermi gas

e/p>mpy forall p

—— Stable ----- Unstable At higher densities, mass contributes less to the total
energy density




ALP PARAMETER SPACE

V(¢) = =A% (cos (¢/f) — 1) R,
. — ma 9 (cos B [ NR — UR
N (¢) = [1 + 5 (cos(¢/f) 1)} 0.25 / Coexistence
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ALP PARAMETER SPACE: CUEXISTENCE

V(¢) = =A% (cos (¢/f) — 1)

m |1+ (cos(6/f) = 1)]

Hybrid stars
M, .S 1M,

max v

Softens EOSs!

ALP self-inter

=

=
p—t

-
Ot

—ff
NR—=UR __——7777
Coexistence Z
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New Ground state
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ALP Neutron coupling
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ALP PARAMETER SPACE: FAT ZOMBIES

—0f
V() = —A* (cos (6/f) — 1) -
i NR — UR
m™ 1 — 1 .
V(@) = ma |1+ 3 5 (cos(6/1) ) 0.25 / Coexistence Z
= _
;% O . 2 NR — NR Ultra-relativistic
O 2 .
O 8
< %:%O 15 New Ground state
af .
) %
< O . 1 _— v 0.5 o ;D\:\
New ground state e IS | , . .
max[M_. 1> M, | 6 01 03 05 07 0.9

' ALP Neutron coupling
EOS is stiffer! q




NGS PHASE: FAT ZOMBIES New ground state

max[M, .1 > M, Oin
EOS is stiffer!
NGS for A =5MeV, ¢ =0.75
44— T T 7T T T T T
This is a huge effect N
Moo ~ 11.2M o
=
;
z
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NGS PHASE: FAT ZOMBIES New ground state

max[M, .1 > M, Oin
EOS (can be) stiffer!
Also interesting on a log plot
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NGS PHASE: FAT ZOMBIES

Also interesting on a log plot

Self bound objects
M ~ NGSR3

Minimal size given by gradient

R~

min—ﬁ

Field has to fit inside R°

10 -

0.001 -

max| M,

New ground state
| > M,

EOS (can be) stiffer!
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* Coupling to a light scalar
» Hybrid stars: disfavored by massive NSs .

» A new ground state: O(10) effects on star properties.

* Finite gradient energy: new phase not accessible in small systems
— does not mess with nuclear physics
— evade potential constraints, e.g 5th force, Rhoades and Raffini bound

* More to do:
* Phenomenology of macroscopic-sized self-bound objects

e Formation?
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MOTIVATION

Observation of very massive neutron stars: Myg > 2M

e.g. binary system PSR J0348+0432: Pulsar
Red Giant




MOTIVATION

Observation of very massive neutron stars: Myg > 2M

Hard to explain

with Standard Model physics

Y . Y
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Figure created by Norbert Wex



MOTIVATION

Observation of very massive neutron stars: Myg > 2M

Hard to explain with Standard Model physics

1 ®* Neutron degeneracy pressure vs gravity

MPA1

&3 ARS PAL1 ‘
nps ENG MS2 \\‘\r'.ht.. m— Mma,x ~Y O(]_) M@
2 - m— Rmax g 10 km
3417 ap1 N WFF3 < GM1
PCL2 \‘\ “L | ° °o_ o
LD | o Gs? 1 ® SM not well understood at high densities
| ~ ‘

> 200,  po = 0.16fm ™"

| « Complicated: non perurbative
_ == nature of QCD, meson
S T A | condensation, hyperons,..
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Radius (km)

Figure created by Norbert Wex



MOTIVATION

Observation of very massive neutron stars: Myg > 2M

Adding SM degrees of freedom softens equation of state: Leads to
lighter neutron stars , e.g. hyperon puzzle, quark stars...

PRL114. 092301

2.8 —
| . PNM

2.4 b—

: PSR J0348+0432 q
2_0 Frrssaasneswnanesessnrensssrenasnseseeciiissesresesssssrrsssseesssssressesssssessssw

AN + ANN (”) PSR J1614-2230

1.6 |

M [Mg]

1.2 |

0.8 |

0.4 |

0.0 . ; ] ; . : 1 . . . 1 . . . ] . . .
11 12 13 14 15
R [km]



BASIC IDEA

Scalar field condensation: the axion get's a vev

1.0

AXxion core

__ 08 5 (ma);L > R New features of

m(m )_1 ~ R
NSs

S

out

= 06 B (me). L <R

QCD axion:
] Balkin, Serra, KS, Weiler
| JHEP 07 (2020) 221

conversion

== 04

Axion brane

0.2

Long-range force

00 05 10 15 20 25
r/R



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

But why don’t we measure much lighter neutron masses in the lab?

f

<R
\/5pot

Nuclei are very dense but tiny! AR =

¢ has to change within R ~ 11m which requires small values f

k‘ We do not mess with nuclear physics on earth



ALP-FERMION-GRAVITY SYSTEM: ZERQ GRADIENT LIMIT

At finite density: @ is displaced from its vacuum value




ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

At finite density: @ is displaced from its vacuum value

0.6

2 T |
~ 04

\_&/ L

This costs energy!

Eorad "Kinetic energy” =..
: AR? +




ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

At finite density: @ is displaced from its vacuum value

0.6

2 T |
= 04

\_&/ L

Egrad "Kinetic energy” =,
: AR? +

This costs energy!

... which has to be balanced by the gain in potential energy

Epot =GgMN P — 2A4



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

At finite density: @ is displaced from its vacuum value

10n core
0.6
2 <
= 04
=

Eorad =2 "Kinetic energy” =..
© AR?

This costs energy!

... which has to be balanced by the gain in potential energy

Epot = gMN P — 2A4

Typical scale of ¢

AR = /
\/5pot




ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

At finite density: @ is displaced from its vacuum value

0.6

2 <
= 04

=

This costs energy!

Eorad =2 "Kinetic energy” =..
© AR?

... which has to be balanced by the gain in potential energy

Epot =GgMN P — 2A4

Consider system large system R > AR



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Corresponds to systems much larger than the typical scale of ¢

2
E(R) ~ R2AR (ALR) + Rgepot — Rggpot



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Corresponds to systems much larger than the typical scale of ¢

2
E(R) ~ RZAR (%R) + Rgepot — Rgepot

\_v Can forget about the scalar gradient 9,,¢ = 0

This is very nice because now the system is effectively decoupled!



ALP-FERMION-GRAVITY SYSTEM: ZERO GRADIENT LIMIT

Corresponds to systems much larger than the typical scale of ¢

2
E(R) ~ RZAR (%R) + RSEpot — ngpot

\.—v Can forget about the scalar gradient 9,,¢ = 0

This is very nice because now the system is effectively decoupled!

Oc

9 = (0 + Neutron Fermigas ——®  Equation of state

0S
09

=0 ——» Pressure - Gravity balance equations



BACKUP

The full coupled system

dV (e+p)e?
/ r [ YY)
e (d¢) r |
i —0 7 o _1
o' = kre” |+ —— (¢)’ -
2 -1—-60 kre ’
n o, 4 B /
¢+ - 5 ;P e)_ ¢




BACKUP
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BACKUP
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BACKUP

Sound speed squared for neutron star EOS with lighter masses
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COEXISTENCE PHASE: COEXISTENCE

1st order phase transition:

* Generically softens EOSs

e.g. Kaon condensation

e Clearly disfavoured




NGS PHASE: FAT ZOMBIES New ground state

max[M, .1 > M, Oin

max

EOS (can be) stiffer!

Also interesting on a log plot

Gravity becomes important

1 1 1 l 1 1 1 l 1 1 1 L
5 10 50 100
RNS [km]



