Discrete R-symmetry, Various Energy Scales and Gravitational Waves

Work in collaboration with W. Lin and T. Yanagida Phys.Rev.D 105 (2022) 5, 055033 [arXiv:2201.03083]

Gongjun Choi (CERN)

Planck 2022, 30/May/2022

Outline

• Why discrete R-symmetry?

Model

• Various energy scales

• Testing the model using Gravitational wave

Why discrete R-symmetry?

Can be free of mixed anomalies within MSSM
 i.e. Z_{NR} x [SU(2)_L]², Z_{NR} x [SU(3)_c]³

• R[Hu Hd] = 4 mod N \rightarrow can avoid $\mu \sim M_P$

 Can naturally suppress 1010105* (R[10 10 H_u]=2 mod N, R[10 5* H_d]=2 mod N, R[Hu Hd] = 4 mod N)

Why discrete R-symmetry?

- An interesting fact about R-symmetry
 - → similar to "spacetime" symmetry
 - → all operators in W should be charged
 - \rightarrow can dimensionful parameters below \mathscr{R} be commonly explained by the spurion of \mathscr{R} ?

Why discrete R-symmetry?

- An interesting fact about R-symmetry
 - → similar to "spacetime" symmetry
 - → all operators in W should be charged
 - \rightarrow can dimensionful parameters below \mathscr{R} be commonly explained by the spurion of \mathscr{R} ?

But, dangerous domain wall problem!

Inflation driven by R-symmetry breaking

- Simplest solution
 - \rightarrow dilute away domain walls by inflation

- Consider inflation driven by Z_{NR} breaking
- Infer a Z_{NR} breaking scale (v) from CMB observables
- Explain various energy scales with "v"

• Symmetry group

 $G = Sp(2) \otimes Z_{6R} \otimes Z_6$

• Particle content

	Q_i	S_{ij}	Φ	5^{*}	10	H_u	H_d	N	Z
Sp(2)		-	-	-	-	-	-	-	-
Z_{6R}	1	0	3	0	0	2	2	0	4
Z_6	1	4	3	4	0	0	2	2	2

Superpotential

$$\begin{split} W \supset -\lambda_{ij} S_{ij} Q_i Q_j + \lambda_{ij} g S_{ij} Q_i Q_j \Phi^2 \\ &+ \lambda_{H,ijk\ell} Q_i Q_j Q_k Q_\ell H_u H_d \\ &+ \lambda_{N,ij} Q_i Q_j N N \\ &+ \lambda_{Z,ijk\ell} Q_i Q_j Q_k Q_\ell Z \,. \end{split}$$

• Symmetry group

 $G = Sp(2) \otimes Z_{6R} \otimes Z_6$

• Particle content

	Q_i	S_{ij}	Φ	5^{*}	10	H_u	H_d	N	Z
Sp(2)		-	-	-	-	-	-	-	-
Z_{6R}	1	0	3	0	0	2	2	0	4
Z_6	1	4	3	4	0	0	2	2	2

Superpotential

$$W \supset -\lambda_{ij} S_{ij} Q_i Q_j + \lambda_{ij} g S_{ij} Q_i Q_j \Phi^2$$

 \mathscr{K} - driven Inflation

 $+ \lambda_{H,ijk\ell} Q_i Q_j Q_k Q_\ell H_u H_d$

 $+\lambda_{N,ij}Q_iQ_jNN$

 $+ \lambda_{Z,ijk\ell} Q_i Q_j Q_k Q_\ell Z \,.$

• Symmetry group

 $G = Sp(2) \otimes Z_{6R} \otimes Z_6$

• Particle content

	Q_i	S_{ij}	Φ	5^{*}	10	H_u	H_d	N	Z
Sp(2)		-	-	-	-	-	-	-	-
Z_{6R}	1	0	3	0	0	2	2	0	4
Z_6	1	4	3	4	0	0	2	2	2

Superpotential

$$\begin{split} W \supset -\lambda_{ij} S_{ij} Q_i Q_j + \lambda_{ij} g S_{ij} Q_i Q_j \Phi^2 \\ &+ \lambda_{H, ijk\ell} Q_i Q_j Q_k Q_\ell H_u H_d \\ &+ \lambda_{N, ij} Q_i Q_j N N \\ &+ \lambda_{Z, ijk\ell} Q_i Q_j Q_k Q_\ell Z \,. \end{split}$$
 Higgsino mass

• Symmetry group

 $G = Sp(2) \otimes Z_{6R} \otimes Z_6$

• Particle content

	Q_i	S_{ij}	Φ	5^{*}	10	H_u	H_d	N	Z
Sp(2)		-	-	-	-	-	-	-	-
Z_{6R}	1	0	3	0	0	2	2	0	4
Z_6	1	4	3	4	0	0	2	2	2

Superpotential

$$W \supset -\lambda_{ij} S_{ij} Q_i Q_j + \lambda_{ij} g S_{ij} Q_i Q_j \Phi^2$$

RH neutrino mass

 $+ \lambda_{H,ijk\ell} Q_i Q_j Q_k Q_\ell H_u H_d$

 $+ \lambda_{N,ij} Q_i Q_j NN$

 $+ \lambda_{Z,ijk\ell} Q_i Q_j Q_k Q_\ell Z \,.$

• Symmetry group

 $G = Sp(2) \otimes Z_{6R} \otimes Z_6$

• Particle content

	Q_i	S_{ij}	Φ	5^{*}	10	H_u	H_d	N	\overline{Z}
Sp(2)		-	-	-	-	-	-	-	-
Z_{6R}	1	0	3	0	0	2	2	0	4
Z_6	1	4	3	4	0	0	2	2	2

Superpotential

$$\begin{split} W \supset -\lambda_{ij} S_{ij} Q_i Q_j + \lambda_{ij} g S_{ij} Q_i Q_j \Phi^2 \\ &+ \lambda_{H, ijk\ell} Q_i Q_j Q_k Q_\ell H_u H_d \\ &+ \lambda_{N, ij} Q_i Q_j N N \\ &+ \lambda_{Z, ijk\ell} Q_i Q_j Q_k Q_\ell Z \,. \end{split}$$

• In confined phase of Sp(2), deformed moduli constraint

$$\rightarrow \qquad \langle Q_i Q_{i+1} \rangle = v^2 = \frac{\Lambda_*^2}{(4\pi)^2} \quad \text{for} \quad i = 1, 3, 5$$

• Quark bilinear condensation gives

$$W_{\text{eff}} \supset -\lambda \Lambda_*^2 S(1 + g \Phi^2)$$

+ $\lambda_H \Lambda_*^4 H_u H_d + \lambda_N \Lambda_*^2 NN + \lambda_Z \Lambda_*^4 Z$

Model (inflation)

• With the Kahler potential,

$$K(\Phi, S) \supset |S|^2 + |\Phi|^2 + c|S|^2 |\Phi|^2 + \dots$$

the first term leads to

$$V(\phi) \simeq \Lambda_*^4 e^{\frac{\phi^2}{2}} \left(1 - g\frac{\phi^2}{2}\right)^2 \left(1 + c\frac{\phi^2}{2}\right)^{-1}$$

$$A_s \sim 2.1 \times 10^{-9}$$

$$n_s \sim 0.96$$

$$R < 0.036$$

$$A_s \sim 0.05 \text{Mpc}^{-1}$$

$$\Phi_{\text{pivot}} \sim 0.05 \text{Mpc}^{-1}$$

Model (various energy scales)

• Next three terms

$$W_{\rm eff} \supset -\lambda \Lambda_*^2 S(1+g\Phi^2)$$

$$+ \lambda_H \Lambda_*^4 H_u H_d + \lambda_N \Lambda_*^2 NN + \lambda_Z \Lambda_*^4 Z$$

Higgsino, RH neutrino mass and SUSY

Relevant physics	Energy scale]	
<i>R</i> -symmetry breaking	$v ~(\sim 10^{15} {\rm GeV})$		
SUSY breaking	$v^2 \; (\sim 10^{12} {\rm GeV})$		$m_{\rm e} \sim 100.1000 T_{\rm e}$
Inflation scale (H_{inf})	$v^2 \ (\sim 10^{12} \text{GeV})$] – (1113/2~100-10001ev
Higgsino mass (μ_H)	$v^4 \ (\sim 10^5 - 10^6 \text{GeV})$		
Right-handed neutrino mass (m_N)	$v^2 \ (\sim 10^{11} - 10^{12} \text{GeV})$]	

Model (various energy scales)

• Reheating can be achieved via

$$\mathcal{O}_{\Phi N} = c_{\Phi N} |\Phi|^2 |N|^2$$

• Given $m_{\Phi_{i}} m_{N} \sim 10^{12} \text{GeV}$,

$$\Gamma(\phi \to 2N) \simeq (m_N/M_P)^2 (m_{\Phi}/8\pi) \simeq 1 \text{GeV}_{\Phi}$$

Testing the Model via GW

• $T_{RH} \sim 10^9 GeV$ and $m_{soft} \sim m_{3/2} \sim 100-1000 TeV$

• Consider a flat direction χ carrying B-charge

 If χ couples to S and Φ in Kahler potential with positive and negative coefficients (+ for S, - for Φ)
 → <χ>=0 during inflation, but <χ>~M_P during reheating

 Cosmic strings form due to U(1)_B-breaking during reheating → can produce GW

A. Kamada and M. Yamada [arXiv:1505.01167]

Summary

- Inflation may constrain R-symmetry breaking scale
- Powers of spurion of R-symmetry breaking may explain various dimensionful parameters in super potential
- When considering \mathscr{R} -induced inflation, CMB observables give $\Lambda_* \sim 10^{12} \text{GeV}$
- Model predicts m_{soft}~O(m_{3/2})~100-1000TeV and T_{RH}~10⁹GeV
- Cosmic string formed during reheating era can probe this parameters → can be tested by ET+2CE