Gravitational wave induced baryon acoustic oscillations

Published in: SciPost Phys. 12 (2022) 114

Christian Döring

Planck 2022 – Paris 30.5.2022

In collaboration with: Salvador Centelles Chuliá Manfred Lindner Björn Malte Schäfer Matthias Bartelmann

Question: Can GWs from FOPTs impact structure formation? If so, can we infer bounds on the FOPT parameters from SF?

- Short review of cosmological first order phase transitions (FOPT) and gravitational waves (GWs)
- Short review on structure formation (SF)
- Physical idea
- Methods
- Results
- Summary

Particle (scalar) model

 $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V_T^{(1)}(\phi)$

Short intro to FOPTs

Particle (scalar) model

 $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V_T^{(1)}(\phi)$

NCK-INSTITUT Short intro to FOPTs ϕ $V_{\text{eff}}(\phi,T)$ Particle (scalar) model $\left\langle \phi\right\rangle =0\text{ }\left\langle \phi\right\rangle \neq0$ $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $T_{\rm crit}$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V_T^{(1)}(\phi)$ $T_{\rm nuc}$ $\langle \phi \rangle \neq 0$

Short intro to FOPTs ϕ $V_{\text{eff}}(\phi,T)$ Particle (scalar) model $0\neq \langle \phi \rangle \ =0 \ \langle \phi \rangle$ $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $T_{\rm crit}$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V^{(1)}_T(\phi)$ $T_{\rm nuc}$ $\langle \phi \rangle \neq 0$ $\langle \phi \rangle = 0$ $\langle \phi \rangle \neq 0$

Short intro to FOPTs ϕ $V_{\text{eff}}(\phi,T)$ Particle (scalar) model $0\neq \langle \phi \rangle =0 \Rightarrow \langle \phi \rangle$ $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $T_{\rm crit}$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V^{(1)}_T(\phi)$ $T_{\rm nuc}$ $\langle \phi \rangle \neq 0$ 1018 $\langle \phi \rangle = 0$ $\langle \phi \rangle \neq 0$ $\langle \phi \rangle \neq 0$ 7

Short intro to FOPTs ϕ $V_{\text{eff}}(\phi,T)$ Particle (scalar) model $\neq 0$ $\mathcal{L} \supset \partial_{\mu}\phi\partial^{\mu}\phi^* - V^{(0)}(\phi)$ $\langle \phi \rangle \, = 0 \, \langle \phi \rangle$ $T_{\rm crit}$ $V_{\text{eff}}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi) + V^{(1)}_T(\phi)$ $T_{\rm nuc}$ $\langle \phi \rangle \neq 0$ $\alpha := \frac{\rho_{\rm vac}}{2}$ **Strength** $\rho_{\rm rad}$ 1918 β^{-1} **Duration** $\langle \phi \rangle = 0$ $\langle \phi \rangle \neq 0$ Scale/Temperature T_{nuc}/T_* $\langle \phi \rangle \neq 0$ [Review: C. Caprini, D. Figueroa, Class.Quant.Grav. 35 (2018) 16, 163001, arXiv:1801.04268]

Nucleation in old phase

Source: https://www.youtube.com/watch?v=_9N-Y2CyYhM

Nucleation in old phase **Bubble expansion**

Nucleation in old phase **Bubble expansion** New phase

HEIDELB

$$
\rho \approx \rho^{(0)} + \rho^{(1)}
$$

12

NCK-INSTITUT

 $\rho \approx \rho^{(0)} + \rho^{(1)}$

Perturbed equations:

$$
\delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}
$$
\n
$$
\nabla^{\nu} \delta T_{\mu\nu} = 0
$$
\nevolution equations for density
\ncontrast\n
$$
\delta(\mathbf{k}) = \frac{\rho^{(1)}}{\rho^{(0)}}(\mathbf{k}, t)
$$

PLANCK-INSTITUT

 $\rho \approx \rho^{(0)} + \rho^{(1)}$

Generated with CAMB
 $k = 0.1/Mpc$ Perturbed equations: $|\Delta_h|$ $10²$ $\delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}$ Δ $\nabla^{\nu} \delta T_{\mu\nu} = 0$ 10^{1} evolution equations for density 10^{0} contrast $\delta (k) := \frac{\rho^{(1)}}{\rho^{(0)}} (k,t)$ 10^{-1} 10^{-2}

 10^{0}

 10^{1}

 η /Mpc

 $10²$

 10^{3}

ANCK-INSTITUT

PLANCK-INSTITUT **HEIDELBERG**

ANCK-INSTITUT HEIDELBERG

➔ FOPT → GW → Density Pert. → Structure ?

HEIDELB

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation

HEIDEI

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation
- ➔ Framework using the so called 1+3 covariant formulation

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation
- ➔ Framework using the so called 1+3 covariant formulation

[G.F.R. Ellis, H. van Elst, Cargèse lectures 1998, arXiv:grqc/9812046v5] [C. Tsagas, A. Challinor, R. Maartens, arXiv:0705.4397v3]

[G.F.R. Ellis, M. Bruni, Phys. Rev. D 40 (Sep. 1989) 1804-1818]

Similar calculation Matter dom. & superhorizon

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation
- ➔ Framework using the so called 1+3 covariant formulation
- → The transition occurs in the radiation dominated era **information** G.F.R. Ellis, M. Bruni, Phys. Rev.

[G.F.R. Ellis, H. van Elst, Cargèse lectures 1998, arXiv:grqc/9812046v5] [C. Tsagas, A. Challinor, R. Maartens, arXiv:0705.4397v3]

D 40 (Sep. 1989) 1804-1818]

Similar calculation Matter dom. & superhorizon

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation
- ➔ Framework using the so called 1+3 covariant formulation
- ➔ The transition occurs in the radiation dominated era
- ➔ Takes place on sub-horizon scales
- ➔ FOPT completes within a Hubble time

Similar calculation Matter dom. & superhorizon

[G.F.R. Ellis, H. van Elst, Cargèse lectures 1998, arXiv:grqc/9812046v5] [C. Tsagas, A. Challinor, R. Maartens, arXiv:0705.4397v3]

[G.F.R. Ellis, M. Bruni, Phys. Rev. D 40 (Sep. 1989) 1804-1818]

- ➔ FOPT → GW → Density Pert. → Structure ?
- ➔ Cosmological perturbation calculation to second order in the density perturbation
- ➔ Framework using the so called 1+3 covariant formulation
- ➔ The transition occurs in the radiation dominated era
- ➔ Takes place on sub-horizon scales
- ➔ FOPT completes within a Hubble time

 $\mathsf T$ O ᠊ᠣ $\overline{}$ pro p ertie ທ

Similar calculation Matter dom. & superhorizon

[G.F.R. Ellis, H. van Elst, Cargèse lectures 1998, arXiv:grqc/9812046v5] [C. Tsagas, A. Challinor, R. Maartens, arXiv:0705.4397v3]

[G.F.R. Ellis, M. Bruni, Phys. Rev. D 40 (Sep. 1989) 1804-1818]

- ➔ Takes place on sub-horizon scales
- ➔ May complete within a Hubble time
- $k \gtrsim a_* H_*$ $\beta^{-1} \leq H_*^{-1}$

 $\beta^{-1} \leq H_*^{-1}$

- \rightarrow Takes place on sub-horizon scales $k \gtrsim a_* H_*$ equality
- ➔ May complete within a Hubble time

Can only impact scales (and smaller) at which the transition occurs

-
- ➔ May complete within a Hubble time

Can only impact scales (and smaller) at which the transition occurs

-
- ➔ May complete within a Hubble time

Can only impact scales (and smaller) at which the transition occurs

FOPT needs to occur at *late times:*

$$
t_* : 10^6 \,\mathrm{s} - 10^{12} \,\mathrm{s}
$$

$$
T \sim (100 - 1) \,\mathrm{eV}
$$

-
- ➔ May complete within a Hubble time

Can only impact scales (and smaller) at which the transition occurs

FOPT needs to occur at *late times:*

$$
t_* \, : \, 10^6 \, \text{s} - 10^{12} \, \text{s}
$$
\n
$$
T \sim (100 - 1) \, \text{eV}
$$

Peak wave number of GW energy density

$$
k_{\rm peak} = 2\pi \frac{\beta}{H_*} H_* a_*
$$

Technicalities:

Step 1: Perturbation theory
$$
\Delta_a : \frac{a}{\rho} D_a \rho
$$
 $Z_a := a D_a \Theta$ $\sigma_{ab} = a^2 \dot{h}_{\alpha\beta}$
in 1+3 framework

GW induced density perturbations

Technicalities:

Step 1: Perturbation theory	$\Delta_a: \frac{a}{\rho} D_a \rho$	$Z_a := a D_a \Theta$	$\sigma_{ab} = a^2 \dot{h}_{\alpha\beta}$	
in 1+3 framework	Analytic estimate: [C. Caprini, R. During, T Konstantin, G. Servant: Phys. Rev. D, 79:083519, 2009]			
Step 2: Apply to FOPT	$s(2)_{\alpha\beta}$	1	$2 s(2)_{\alpha\beta}$	2009

situation

Phys. Rev. D, 79:083519, 2009] $\delta^{(2) \prime\prime}(\kappa,\tau) + \frac{1}{3} \kappa^2 \delta^{(2)}(\kappa,\tau) = 8 \cdot \Omega_{\rm GW}(\kappa,\tau)$
 $\tau \coloneqq \frac{t}{H_*}$ $\kappa \coloneqq \frac{k}{a_* H_*}$

 \bullet

GW induced density perturbations

Technicalities:

Step 1: Perturbation theory	$\Delta_a: \frac{a}{\rho} D_a \rho$	$Z_a := a D_a \Theta$	$\sigma_{ab} = a^2 \dot{h}_{\alpha\beta}$
in 1+3 framework	Analytic estimate: [C. Caprini, R. Durre, T Konstandin, G. Servanti- Phys. Rev. D, 79:083519, 2009]		
Step 2: Apply to FOPT	$\delta^{(2)''}(\kappa, \tau) + \frac{1}{3} \kappa^2 \delta^{(2)}(\kappa, \tau) = 8 \cdot \Omega_{\text{GW}}(\kappa, \tau)$	$\tau := \frac{t}{H_*}$	$\kappa := \frac{k}{a_* H_*}$
Step 3: Calculate transferrfunction and	$T^2(k) = 1 + \left(\frac{\delta^{(2)}}{\delta^{(1)}}(k)\right)^2$	$\widetilde{\mathcal{P}}(k) \sim T^2(k) \mathcal{P}(k)$	
MP spectrum			

GW induced density perturbations

Technicalities:

Step 1: Perturbation theory	$\Delta_a: \frac{a}{\rho} D_a \rho$	$Z_a := a D_a \Theta$	$\sigma_{ab} = a^2 h_{\alpha\beta}$
in 1+3 framework	Analytic estimate: [C. Caprini, R. Durre, T Konstandin, G. Servanti- Phys. Rev. D, 79:083519, 2009]		
Step 2: Apply to FOPT	$\delta^{(2)''}(\kappa, \tau) + \frac{1}{3} \kappa^2 \delta^{(2)}(\kappa, \tau) = 8 \cdot \Omega_{\text{GW}}(\kappa, \tau)$	$\tau := \frac{t}{H_*}$	$\kappa := \frac{k}{a_* H_*}$
Step 3: Calculate transferrfunction and	$T^2(k) = 1 + \left(\frac{\delta^{(2)}}{\delta^{(1)}}(k)\right)^2$	$\implies \widetilde{\mathcal{P}}(k) \sim T^2(k) \mathcal{P}(k)$	
MP spectrum			

Step 4: Interpretation

Second order baryon acoustic oscillations driven by GW from FOPT

Impact on linear MP spectrum

Changing scale Changing strength Changing duration

Impact on linear MP spectrum

Limits from cosmic variance

Particle models that can achive this: e.g. conformal models

Summary

- GWs from FOPTs can seed density perturbations at second order
- Effect is bound to the scale at which the FOPT occurs \rightarrow late FOPTs
- Only very strong and long FOPTs can have significant impact
- Cosmic variance bound leads to new limit on very small GW frequencies

Backup slides

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK **HEIDELBERG**

1+3 Decomposition

Spacetime decomposition:

$$
u^{a} = \frac{dx^{a}}{d\tau} \qquad h_{ab} := g_{ab} + u_{a}u_{b}
$$
\n1+3 approach

\nStewart & Walker Lemma:

Gauge invariant $S^{(1)} \rightarrow S^{(1)} + \epsilon \mathfrak{L}_{\xi} S^{(0)}$ if zero

Motion of test particle

volume expansion

$$
\nabla_b u_a = \sigma_{ab} + \omega_{ab} + \frac{1}{3} \Theta h_{ab} - A_a u_b
$$

shear vorticity acceleration

density perturbation volume gradient $\Delta_a : \frac{a}{a} D_a \rho$

 $Z_a := aD_a \Theta$

$$
aD_b\Delta_a = \frac{1}{3}\Delta h_{ab} + \Delta_{\langle ab \rangle} + \Delta_{[ab]}
$$

P. K. S. Dunsby, M. Bruni, G.F.R. Ellis, Class. Quant. Grav. 14 (1997) 1215-1222

J. M. Stewart, M. Walker, Proc. R. Soc. Lond. A 341 no. 49, (1974)

Evolution equations

$$
\begin{split}\n\dot{\Delta}_{\langle a \rangle} &= \frac{p}{\rho} \Theta \Delta_a - \left(1 + \frac{p}{\rho}\right) Z_a + a \frac{\Theta}{\rho} \left(\dot{q}_{\langle a \rangle} + \frac{4}{3} \Theta q_a\right) - \frac{a}{\rho} \,^b a_b + a \frac{\Theta}{\rho} \,^b \pi_{ab} \\
&- \left(\sigma^b{}_a + \omega^b{}_a\right) \Delta_b - \frac{a}{\rho} \,^a \left(2A^b q_b + \sigma^{bc} \pi_{bc}\right) + a \frac{\Theta}{\rho} \left(\sigma_{ab} + \omega_{ab}\right) q^b + a \frac{\Theta}{\rho} \, \pi_{ab} A^b \\
&+ \frac{1}{\rho} \left(\,^b q_b + 2A^b q_b + \sigma^{bc} \pi_{bc}\right) \left(\Delta_a - a A_a\right) \\
\dot{Z}_{\langle a \rangle} &= -\frac{2}{3} \Theta Z_a - \frac{1}{2} \kappa \rho \Delta_a - \frac{3}{2} \kappa a_a p - a \left[\frac{1}{3} \Theta^2 + \frac{1}{2} \kappa (\rho + 3p) - \Lambda\right] A_a + a_a^b A_b \\
&- \left(\sigma^b{}_a + \omega^b{}_a\right) Z_b - 2a_a \left(\sigma^2 - \omega^2\right) + 2a A_a^b A_b \\
&- a \left[2 \left(\sigma^2 - \omega^2\right) - \frac{b}{2} A_b - A^b A_b\right] A_a\n\end{split}
$$

NCK-INSTITUT

HEIDELBERG

Transferfunction

Estimating the linear density perturbation from the linear MP spectrum:

AAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

- J. Frieman,C. Hill, R Watkins: Phys. Rev. D, 46:1226-1238, 1992
- I. Wasserman: Phys. Rev. Lett, 57:2234-2236, 1986
- A. Patwardhan, G. Fuller: Phys. Rev. D, 90(6):063009, 2014
- Xiao-chun Luo, D. Schramm: Astrophys. J., 421:393-399, 1994