New methods for studying the Electroweak phase transition

Andreas Ekstedt DESY

II. Institute for Theoretical Physics

Planck 2022, May 30

Phase transitions in the early universe

Why care about phase transitions?

Baryon asymmetry problem \rightarrow Electroweak baryogenesis

Gravitational waves \rightarrow Pushing field theory to its limit!

Outline

Sources of theoretical uncertainties

Consistent methods to handle (tree-level) radiative barriers

Importance of radiative corrections for the nucleation rate

Talk based on the papers

2205.08815 by AE, Philipp Schicho and Tuomas V.I. Tenkanen 2205.07241 by AE, Oliver Gould and Johan Löfgren 2205.05145 by AE

Problems at high temperatures

Slow convergence

 $T^2 \gg m^2 \implies$ Large Logs

 $m_{\rm eff}^2=(m^2+aT^2)\ll m^2$

 \rightarrow Need 2-loop thermal masses

Huge uncertainty for GW spectrum (2104.04399)

High-temperature effective theory

Integrate out $E \sim T$ modes

 \rightarrow Logs made small by matching at $\mu\approx {\it T}$

- \rightarrow Unambiguous resummations
- \rightarrow Regular (T=0) field theory in 3d

No more thermal integrals!

DRalgo : Automatic matching to two loops (2205.08815)

Matches to the effective theory

- ightarrow Two-loop thermal masses
- \rightarrow Two-loop Debye masses
- \rightarrow One-loop thermal couplings
- \rightarrow Two-loop effective potential

Phase transitions

3d calculation: $V_{1-\text{loop}} \sim -\frac{m_{\text{eff}}^3}{12\pi}$ Nucleation rate: $\Gamma \sim e^{-S_3/T}$

- \rightarrow Get S_3 from the effective theory
- \rightarrow Same procedure; better accuracy!

First-order phase transitions for radiative barriers

Start with the effective theory

Scalar potential $V(\phi) = \frac{1}{2}m_3^2\phi^2 + \frac{1}{4}\lambda_3\phi^4$ ($\lambda_3 = T\lambda_{4d}$ to LO) Integrating out vector-bosons generates a barrier: $\delta V(\phi) = -\frac{1}{16\pi}g_3^3\phi^3$ Only consistent if $\frac{m_H^2}{m_A^2} \sim \frac{\lambda_3}{g_3^2} \equiv x \ll 1$ After a field-rescaling: $V_{\text{LO}}(\phi) = \frac{1}{2}y\phi^2 - \frac{1}{16\pi}\phi^3 + \frac{1}{4}x\phi^4$, $y \equiv \frac{m_3^2}{g_3^4} \sim x^{-1}$ Different minima: $\phi_{\text{S}} = 0, \phi_{\text{b}} \sim x^{-1} \neq 0$

Critical temperature (mass)

Minima coincide when $\Delta V(x, y_c) \equiv V_{LO}(\phi_b) - V_{LO}(\phi_s) = 0 \implies$ Critical mass y_c Consistent expansion: $\phi_b = \phi_{LO} + x \phi_{NLO} + ... \implies$ Gauge invariance Critical mass: $y_c = y_{LO} + x y_{NLO} + ... \implies$ Exact RG-invariance at every order

Comparison with Lattice (new lattice results taken from 2205.07238)

5 of 14

Radiative corrections to the nucleation rate

Nucleation rate

$$\begin{split} \Gamma &= \underbrace{\Gamma_{\text{stat}}}_{\text{Boltzmann factor}} \times \underbrace{\Gamma_{\text{dyn}}}_{\text{Damping}} (2201.07331) \\ \text{Effective action: } \Gamma_{\text{stat}} &= e^{-S_{\text{eff}}} \\ \text{To leading order } S_{\text{eff}} &= S_3 + S_{\text{NLO}} + \dots \\ \text{Function determinant gives } S_{\text{NLO}} \end{split}$$

1-Loop correction

 $egin{aligned} S_{ ext{NLO}} &= rac{1}{2}\sum_i ext{Tr} \log \left[abla^2 + M_i^2 [\phi_B]
ight] \ S_{ ext{NLO}} &\sim R^3 ext{ and } S_3 \sim R^2 ext{ for large bubbles} \end{aligned}$

 \implies Corrections to the bounce are important

Example: Dimension-6 operator

$$\begin{split} V(\phi) &= \frac{1}{2}m_3^2\phi^2 - \frac{1}{4}\lambda_3\phi^4 + \frac{1}{32}c_6\phi^6 \ (c_6 = T^2c_{6,4d})\\ S_{\text{eff}} &= S_{\text{LO}} + S_{\text{NLO}} + \dots\\ \beta_N/H_N &\sim \tilde{\beta} \rightarrow \text{Observable in the effective 3d theory} \end{split}$$

Results for $\tilde{\beta}$ (2205.05145)

Summary

The Electroweak phase transition is a hot topic

- \rightarrow Uncertainties for common methods span orders of magnitude
- \rightarrow High-temperature effective theory key to reduce RG-scale dependence
- \rightarrow Consistent perturbative expansion key to remove gauge dependence
- \rightarrow Going beyond the bounce-action key for accurate predictions

Thank You

Backup slides

DRalgo example: Standard-Model with nF fermion families

Effective Couplings: Lb, Lf $\sim \log \mu / T$ (matching scale $\mu \sim T$)

One-loop scalar masses

$$Out[*] = \left\{ m23d \to \frac{1}{16} T^2 \left(3 gw^2 + gY^2 + 8 \lambda 1H + 4 yt^2 \right) + m2 \right\}$$

Two-loop Debye masses

$$\begin{aligned} \text{Out[*]} &= & \left\{ \mu \text{sqSU2} \rightarrow \frac{\text{gw}^2 \left(T^2 \left(\text{gw}^2 \left(86 \text{ Lb} \left(2 \text{ nF} + 5 \right) - 32 \left(\text{Lf} - 1 \right) \text{nF}^2 + (44 - 80 \text{ Lf} \right) \text{nF} + 207 \right) - 3 \left(6 \left(8 \text{ gs}^2 \text{ nF} - 4 \lambda 1 \text{H} + \text{yt}^2 \right) + \text{gY}^2 \left(4 \text{ nF} - 3 \right) \right) \right) + 144 \text{ m2} \right)}{1152 \pi^2}, \\ & \mu \text{sqSU3} \rightarrow \frac{\text{gs}^2 T^2 \left(4 \text{ gs}^2 \left(33 \text{ Lb} \left(\text{nF} + 3 \right) + \text{nF} \left(-4 \text{ Lf} \left(\text{nF} + 3 \right) + 4 \text{ nF} + 3 \right) + 45 \right) - 27 \text{ gw}^2 \text{ nF} - 11 \text{ gY}^2 \text{ nF} - 36 \text{ yt}^2 \right)}{576 \pi^2}, \\ & \mu \text{sqU1} \rightarrow -\frac{\text{gY}^2 \left(T^2 \left(18 \left(88 \text{ gs}^2 \text{ nF} - 36 \lambda 1 \text{H} + 33 \text{ yt}^2 \right) + 81 \text{ gw}^2 \left(4 \text{ nF} - 3 \right) + \text{gY}^2 \left(6 \text{ Lb} \left(10 \text{ nF} + 3 \right) + 800 \left(\text{Lf} - 1 \right) \text{ nF}^2 + 60 \left(4 \text{ Lf} + 17 \right) \text{ nF} - 45 \right) \right) - 1296 \text{ m2} \right)}{10 368 \pi^2}. \end{aligned}$$

11 of 14

From 3d observables to the latent heat

Observables in the 3d to two-loops (2205.07241)

$$\Delta \langle \Phi^{\dagger} \Phi \rangle \equiv \partial_{y} \Delta V(x, y_{c}), \quad \Delta \langle (\Phi^{\dagger} \Phi)^{2} \rangle \equiv \partial_{x} \Delta V(x, y_{c})$$

$$\Delta \langle \Phi^{\dagger} \Phi \rangle = \frac{1 + \frac{51}{2}x + 13\sqrt{2}x^{3/2}}{2(8\pi x)^{2}}, \quad \Delta \langle (\Phi^{\dagger} \Phi)^{2} \rangle = \frac{1 + 51x + 14\sqrt{2}x^{3/2}}{4(8\pi x)^{4}}$$

Comparison with other methods

Radiative corrections to the nucleation rate

Nucleation rate

$$\begin{split} & \Gamma = \underbrace{\Gamma_{\text{stat}}}_{\text{Boltzmann factor}} \times \underbrace{\Gamma_{\text{dyn}}}_{\text{Damping}} (2201.07331) \\ & \Gamma_{\text{stat}} = e^{-S_{\text{eff}}}. \text{ To leading order } \Gamma = e^{-S_3} \\ & S_{\text{NLO}} = \frac{1}{2}\sum_i \text{Tr} \log \left[-\nabla^2 + M_i^2 [\phi_B] \right] \\ & \text{Radiative effects can be large:} \\ & S_{\text{NLO}} \sim R^3 \text{ and } S_3 \sim R^2 \text{ for large bubbles} \\ & \Longrightarrow \text{ Corrections to the bounce are important} \end{split}$$

Examples: Dimension-6 operator

$$V(\phi) = \frac{1}{2}m_3^2\phi^2 - \frac{1}{4}\lambda_3\phi^4 + \frac{1}{32}c_6\phi^6$$

 \rightarrow Dimensionless variables
 $(x = \frac{\lambda_3}{g_3^2}, \quad y = \frac{m_3^2}{\lambda_3^2})$

Observables

Nucleation mass/temperature: $S_{\text{eff}}(x, y_N) = 126$

$$\beta_N/H_N = \frac{d}{d\log T} S_{\text{eff}}(x, y_N) \approx \frac{d}{d\log T} y \times \nabla_y S_{\text{eff}}(x, y_N) \implies \tilde{\beta} \equiv \nabla_y S_{\text{eff}}(x, y_N)$$

14 of 14