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Phase transitions in the early universe
Why care about phase transitions?

Baryon asymmetry problem→ Electroweak baryogenesis
Gravitational waves→ Pushing field theory to its limit!

Outline
Sources of theoretical uncertainties
Consistent methods to handle (tree-level) radiative barriers
Importance of radiative corrections for the nucleation rate

Talk based on the papers
2205.08815 by AE, Philipp Schicho and Tuomas V.I. Tenkanen
2205.07241 by AE, Oliver Gould and Johan Löfgren
2205.05145 by AE
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Problems at high temperatures
Slow convergence

T 2�m2 =⇒ Large Logs
m2

eff = (m2 + aT 2)�m2

→ Need 2-loop thermal masses
Huge uncertainty for GW spectrum
(2104.04399)

High-temperature effective theory
Integrate out E ∼ T modes
→ Logs made small by matching at
µ ≈ T
→ Unambiguous resummations
→ Regular (T=0) field theory in 3d
No more thermal integrals!

DRalgo : Automatic matching to two loops
(2205.08815)

Matches to the effective theory
→ Two-loop thermal masses
→ Two-loop Debye masses
→ One-loop thermal couplings
→ Two-loop effective potential

Phase transitions

3d calculation: V1-loop ∼−
m3

eff
12π

Nucleation rate: Γ∼ e−S3/T

→ Get S3 from the effective theory
→ Same procedure; better accuracy!
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First-order phase transitions for radiative barriers

Start with the effective theory

Scalar potential V (φ) = 1
2m2

3φ2 + 1
4λ3φ4 (λ3 = T λ4d to LO)

Integrating out vector-bosons generates a barrier: δV (φ) =− 1
16π

g3
3φ3

Only consistent if m2
H

m2
A
∼ λ3

g2
3
≡ x � 1

After a field-rescaling: VLO(φ) = 1
2yφ2− 1

16π
φ3 + 1

4xφ4, y ≡ m2
3

g4
3
∼ x−1

Different minima: φs = 0,φb ∼ x−1 6= 0

Critical temperature (mass)
Minima coincide when ∆V (x ,yc)≡ VLO(φb)−VLO(φs) = 0 =⇒ Critical mass yc

Consistent expansion: φb = φLO + xφNLO + . . . =⇒ Gauge invariance
Critical mass: yc = yLO + xyNLO + . . . =⇒ Exact RG-invariance at every order
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Comparison with Lattice (new lattice results taken from
2205.07238)
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Condensates to NNLO

∆
〈
Φ†Φ

〉
=

1 + 51
2 x + 13

√
2x3/2

2(8πx)2

∆
〈

(Φ†Φ)2
〉

=
1 + 51x + 14

√
2x3/2

4(8πx)4 .

Latent heat: L≈ 4×∆
〈
Φ†Φ

〉
NLO corresponds to 2-loops
→ 2-loop corrections are essential
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Radiative corrections to the nucleation rate

Nucleation rate
Γ = Γstat︸︷︷︸

Boltzmann factor

× Γdyn︸︷︷︸
Damping

(2201.07331)

Effective action: Γstat = e−Seff

To leading order Seff = S3 + SNLO + . . .

Function determinant gives SNLO

1-Loop correction

SNLO = 1
2 ∑i Tr log

[
−∇2 + M2

i [φB]
]

SNLO ∼ R3 and S3 ∼ R2 for large
bubbles
=⇒ Corrections to the bounce are
important

Example: Dimension-6 operator

V (φ) = 1
2m2

3φ2− 1
4λ3φ4 + 1

32c6φ6 (c6 = T 2c6,4d )
Seff = SLO + SNLO + . . .

βN/HN ∼ β̃ → Observable in the effective 3d theory
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Results for β̃ (2205.05145)

LO

NLO, x =4-1

NLO, x =6-1

NLO, x =8-1
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Radiative corrections can be large

x = λ3
g2

3
≈ λ

g2 , c6 = T 2c6,4d

Absolute upper bound c6 . x3

Large corrections for small quartics
→ Corrections propagate to GWs
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Summary
The Electroweak phase transition is a hot topic
→Uncertainties for common methods span orders of magnitude
→ High-temperature effective theory key to reduce RG-scale dependence
→ Consistent perturbative expansion key to remove gauge dependence
→ Going beyond the bounce-action key for accurate predictions
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Thank You
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Backup slides
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DRalgo example: Standard-Model with nF fermion families
Effective Couplings: Lb, Lf∼ logµ/T (matching scale µ ∼ T )

Out[ ]= gw3d2 
gw4 T (43 Lb - 8 Lf nF+ 4)

96 π2
+ gw2 T, gY3d2  gY2 T -

gY4 T (3 Lb + 40 Lf nF)

288 π2
, gs3d2 

gs4 T (33 Lb - 4 Lf nF+ 3)

48 π2
+ gs2 T,

λ1H3d 
T 24 λ1H 3 gw2 Lb + gY2 Lb - 4 Lf yt2 + (2- 3 Lb) 3 gw4 + 2 gw2 gY2 + gY4 + 256 π2 λ1H - 192 λ1H2 Lb + 48 Lf yt4

256 π2


One-loop scalar masses

Out[ ]= m23d 
1

16
T2 3 gw2 + gY2 + 8 λ1H + 4 yt2 +m2

Two-loop Debye masses

Out[ ]= μsqSU2
gw2 T2 gw2 86 Lb (2 nF+ 5) - 32 (Lf - 1) nF2 + (44- 80 Lf) nF+ 207 - 3 6 8 gs2 nF- 4 λ1H + yt2 + gY2 (4 nF- 3) + 144m2

1152 π2
,

μsqSU3
gs2 T2 4 gs2 (33 Lb (nF+ 3) + nF (-4 Lf (nF+ 3) + 4 nF+ 3) + 45) - 27 gw2 nF- 11 gY2 nF- 36 yt2

576 π2
,

μsqU1 -
gY2 T2 18 88 gs2 nF- 36 λ1H + 33 yt2 + 81 gw2 (4 nF- 3) + gY2 6 Lb (10 nF+ 3) + 800 (Lf - 1) nF2 + 60 (4 Lf + 17) nF- 45 - 1296 m2

10368 π2
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From 3d observables to the latent heat

Observables in the 3d to two-loops (2205.07241 )

∆
〈
Φ†Φ

〉
≡ ∂y ∆V (x ,yc), ∆

〈
(Φ†Φ)2〉≡ ∂x ∆V (x ,yc)

∆
〈
Φ†Φ

〉
=

1 + 51
2 x + 13

√
2x3/2

2(8πx)2 , ∆
〈

(Φ†Φ)2
〉

=
1 + 51x + 14

√
2x3/2

4(8πx)4
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Comparison with other methods
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Radiative corrections to the nucleation rate
Nucleation rate

Γ = Γstat︸︷︷︸
Boltzmann factor

× Γdyn︸︷︷︸
Damping

(2201.07331)

Γstat = e−Seff . To leading order Γ = e−S3

SNLO = 1
2 ∑i Tr log

[
−∇2 + M2

i [φB]
]

Radiative effects can be large:
SNLO ∼ R3 and S3 ∼ R2 for large bubbles
=⇒ Corrections to the bounce are
important

Examples: Dimension-6 operator

V (φ) = 1
2m2

3φ2− 1
4λ3φ4 + 1

32c6φ6

→ Dimensionless variables
(x = λ3

g2
3
, y =

m2
3

λ 2
3

)

Observables
Nucleation mass/temperature: Seff(x ,yN) = 126
βN/HN = d

d logT Seff(x ,yN)≈ d
d logT y ×∇ySeff(x ,yN) =⇒ β̃ ≡ ∇ySeff(x ,yN)
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