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Phase transitions in the SM

Phase trasitions are important events in the evolution of the Universe

» the SM prediCtS two of them  (QCD confinement EW symmetry breaking)
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In the SM the QCD and EWV PhTs are extremely weak

No distinctive experimental signatures and breaking of thermal equilibrium



First-order EWPhT

Several extensions of the SM predict a first-order EWPhT

" two minima are separated by a barrier
(two phases may coexist)

®»  the field tunnels from false to true
minimum at T =T, < T,

Viih, T

" the transition proceeds through bubble
nucleation

» interesting experimental signatures (GW)

» possible explanation of baryogenesis



Bubble nucleation

Bubble dynamics can produce gravitational waves and baryogenesys

GW from sound waves
and turbulence in the plasma

GW from y
bubble collision ,L

baryogenesys



Key features of a first-order phase transition

the nucleation temperature T,

" the strength a

= the (inverse) time duration of the transition 5 /H
" the speed of the bubble wall v,

" the thickness of the bubble wall L,,

The parameters Ty, &, [ /H are quite easy to compute
instead, v, L,, are much more challenging

Gravitational waves and the efficiency of the EVWW-baryogenesis crucially depend on them

EWBG thought to be efficient for slow moving walls. Recent results showed efficiency also
For fast moving walls

GWs are maximised for fast-moving walls



The dynamics of a bubble wall

Dynamics of a “simple” system

Scalar field + plasma

the wall front can reach a terminal velocity v, if
the pressure inside the bubble balances the friction of the plasma

otherwise the bubbles never stop accelerating (run-away regime)

We assume planar walls and steady state (terminal velocity v, reached)



Origin of the friction

the wall moves towards the symmetric phase
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Friction arise from momentum transfer between bubble wall and particles
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Bubble wall movement brings the plasma out of equilibrium

Fluctuations generate dissipation (Fr|ct|on

, dVT B



The effective Boltzmann equation

Assumptions on the plasma

High temperature, weakly coupled plasma
Higgs varying scale L,, > q~1 inverse of momentum transfer in the plasma
Only 2 — 2 processes in the plasma are considered

Plasma made of two different species
= Jop quark (main contributions)
= Al the other SM particles (background, assumed to be in equilibrium)

Effective Boltzmann equation

Pz (m*#)’ _ _
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Collision operator

Goal: solve the Boltzmann equation to obtain the friction



Previous approaches to the solution

To deal with the collision term previous approaches made assumptions
on the shape of the perturbation

* Fluid approximation [1]
* Extended fluid approximation [2]
* New formalism [3]

} Old formalism

[1] Moore, Prokopec, 1995
[2] Dorsch, Huber, Konstandin, 2021
[3] Laurent, Cline, 2020

» Neglection of the d,, 6f term

» Boltzmann equation integrated with a set of weights leading to a set of differential equations
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* Extended fluid approximation [2]
* New formalism [3]

} Old formalism

[1] Moore, Prokopec, 1995
[2] Dorsch, Huber, Konstandin, 2021
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» Neglection of the d,, 6f term
» Boltzmann equation integrated with a set of weights leading to a set of differential equations

Recently a new method has been proposed

* Expansion using a polynomial basis [4]
[4] Laurent, Cline, 2022



Full solution to the Boltzmann equation

VWe propose an algorithm to solve the Boltzmann equation numerically
without relying on any ansatz on the shape of 6f

Key features

* Inclusion of all terms in the Boltzmann equation
* New approach to deal with collision integrals

* [terative routine where convergence is achieved in few steps



Structure of the Liouville operator

Liouville operator is a derivative along flow paths
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E,p, and c = \/pz2 + m?(z) are conserved along the flow paths



Structure of the collision integrals

Linearized collision operator yields two terms
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Structure of the collision integrals

Linearized collision operator yields two terms

— )
Clsfil = Qf,(];) + ((8f (k) = (6f (")) —(6f (kD))

" The perturbation does not appear inside an integral: easier to deal

» Bracket term. Perturbation is integrated, more difficult to handle

Kernels for processes 4/

d3k

(SF () o f 75 % 8F (0

= Reduce the integrations involving 8 f
= Performed once, increasing timing performances

* Depends on Lorentz invariants



General structure of the Boltzmann equation

1
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General structure of the Boltzmann equation

1
d Qof f"zey(E—vpz).|_1

The equation can be solved exactly if § is known and imposing boundary conditions

Iterative procedure

* Initial guess on the solution

* Next step of iteration is found by solving

d Q 5fn . (mZ)/ / !
O T T =S = 0t (0t~ (8 0~ 5 GO

* Stop when ~ 1% convergence is reached
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Integrated friction results
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Integrated friction results
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Integrated friction results
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Conclusions and outlook

Conclusions:

= Fully quantitative solution without any ansatz on &f for the first time

* Quantitative and qualitative differences with previous approaches
mainly for v, > 0.2
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Conclusions and outlook

Conclusions:

= Fully quantitative solution without any ansatz on &f for the first time

* Quantitative and qualitative differences with previous approaches
mainly for v, > 0.2

Future perspectives:

= Inclusion of the W, Z bosons
" |nclusion of the background ————  Can be partially done as in [Cline, Laurent 2022]

" |nclusion of 1 = 2 and 2 — 1 processes



