Planck-2022 Paris Ignatios' Fest June 3 2022

String loop corrections and de Sitter vacua

George K. Leontaris

University of Ioannina GREECE

based on works with:

I. Antoniadis, Y. Chen 1803.08941, 1909.10525 I. Antoniadis, O. Lacombe 2007.10362, 2109.03243 Pramod Shukla 2203.03362

On the occasion of the retirement of Prof. Ignatios Antoniadis

Reminiscences and Landmarks

- ▲ *Late* 1980's at CERN: acquaintance with Ignatios's work
- ▲ 1988: First collaboration

 $SO(6) \times SO(4)$ *inspired from 4-d superstring.*

- ^N c.1995 : *Ecole Polytechnique*
- N c.2012 -2015 : *CERN*

F-theory models, Mordell-Weil U(1)*'s etc*

^N 2018−: *LPTHE, Paris*

Moduli Stabilisation and String Inflation...

 $Lausanne$ 1988

Motivation

 \triangle String Derived Effective Field Theories (EFT) \triangle

Basic problems that must be solved before considered as viable candidates for particel physics models

Compactifications characterised by large numbers of massless scalar fields (moduli)

 \blacktriangle Find CY compactification inducing an EFT with $V_{\text{min}} > 0$ and positive masses-squared for all moduli fields \Rightarrow

 \Rightarrow Moduli Stabilisation \Leftarrow

 \triangle Look for possible Inflaton candidates among *moduli*

A at String Theory level: A

 \blacktriangle # CY of **Compactifications** and # fluxes \Rightarrow Enormous number of String Vacua

⇓

String Landscape

A Long standing Question A

Are there any de Sitter vacua in the Landscape?

... Even if the answer is Yes... we know that they are...

 \Rightarrow Certainly Scarce \Leftarrow

 $\mathcal F$ ocus of present $\mathcal T$ alk Context: type \mathcal{IIB} theory:

A A solution to the Moduli Stabilisation problem

 \triangle Find a *de Sitter* vacuum in String Theory ... based only on perturbative correction

A If yes:

Examine cosmological implications such as inflation.

 \star Type II-B/F-theory [⋆] Moduli Space (*notation*)

▲ Graviton, dilaton and Kalb-Ramond (KR)-field

 $g_{\mu\nu}, \phi, B_{\mu\nu} \rightarrow B_2$

▲ Scalar, 2- and 4-index fields ($p-form\ potentials$)

 $\mathbf{C_0}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = 0, 2, 4$

1. $\blacktriangle C_0$, $\phi \rightarrow combined\ to\ axion-dilaton\ modulus:$

 $S = C_0 + i e^{-\phi} \equiv C_0 + \frac{i}{\phi}$ $g_{\boldsymbol{s}}$

2. ^za : *Complex Structure (CS)* moduli (*shape*)

3. ^Tⁱ : K¨ahler moduli (*size*)

Type II-B effective Supergravity

 $\label{eq:basic} Basic \ \ 'ingredients' :$ Superpotential $\mathcal W$ and Kähler potential $\mathcal K$ \blacktriangle The Superpotential \mathcal{W} \blacktriangle

^N *Field strengths:*

$$
F_p := d C_{p-1}, H_3 := d B_2, \Rightarrow G_3 := F_3 - S H_3
$$

 \triangle *Holomorphic* (3,0)*-form :* $\Omega(z_a)$ Flux-induced superpotential (*G.V.W. hep-th/9906070*):

$$
\mathcal{W}_0 = \int \, \mathbf{G_3} \wedge \Omega(z_a)
$$

 W -Flatness conditions:

$$
\mathcal{D}_{z_a}\mathcal{W}=0, \quad \mathcal{D}_S\mathcal{W}=0:
$$

 \Rightarrow z_a and S stabilised \Leftarrow

but!

A Kähler moduli $\notin \mathcal{W}_0 \implies$ remain unfixed! A

The Kähler potential \blacktriangle

$$
\mathcal{K}_0 = -\sum_{i=1}^3 \ln(-i(T_i - \bar{T}_i)) - \ln(-i(S - \bar{S})) - \ln(i \int \Omega \wedge \bar{\Omega})
$$

 \triangle The classical scalar potential \triangle

$$
V = e^{K} \left(\sum_{I,J} \mathcal{D}_{I} \mathcal{W}_{0} \mathcal{K}^{I \bar{J}} \mathcal{D}_{\bar{J}} \mathcal{W}_{0} - 3|\mathcal{W}_{0}|^{2} \right) \equiv 0
$$

⇓

Kähler moduli completely undetermined! *due to flatness conditions and the no-scale structure*

⇓

Engineering the appropriate geometric set up and compute: Kähler moduli-dependent QUANTUM corrections

The Kähler potential K

 and PERTURBATIVE String Loop Corrections

$\triangle \alpha'^3$ Corrections \triangle

Imply redefinition of 4-d dilaton (*Becker et al, hep-th:0204254*)

$$
e^{-2\phi_4} = e^{-2\phi_{10}}(\mathcal{V} + \xi)
$$

= $e^{-\frac{1}{2}\phi_{10}}(\hat{V} + \hat{\xi})$ (Einstein frame)

 $V(t^k)$ *6d-volume*, with $t^k = ImT^k$:

$$
\hat{\mathcal{V}} = \frac{1}{3!} \kappa_{ijk} \hat{t}^i \hat{t}^j \hat{t}^k
$$
\n
$$
t^k = -\text{Im}(T^k) \equiv \hat{t}^k g_s^{1/2}
$$
\n
$$
\xi = -\frac{\zeta(3)}{4(2\pi)^3} \chi \equiv \hat{\xi} g_s^{3/2}
$$

Hence, $\hat{\xi}$ incorporated into Kähler potential through the shift $(\hat{\mathcal{V}} + \hat{\xi})$. *(to simplify, from now on we write* \mathcal{V} *.)*

AA

D7-branes and Logarithmic corrections

Two ingredients needed for log*-corrections:*

AA

 \mathcal{A}) Intersecting **D7-brane configuration**:

 \mathcal{B}) Higher derivative couplings in curvature

(generated by multigraviton scattering) (see hep-th/9704145; 9707013; 9707018)

Leading correction term in type II-B action: proportional to the fourth power of curvature: $\propto R^4$

After reduction on $\mathcal{M}_4 \times \mathcal{X}_6$, (with \mathcal{M}_4 4-d Minkowski) R^4 induces a novel Einstein-Hilbert term $\mathcal{R}_{(4)} \propto$ by the Euler characteristic χ :

$$
\propto \chi \int_{M_4} (\zeta(2) - \zeta(3)e^{-2\phi}) \mathcal{R}_{(4)},
$$

induced $\mathcal{E}H$ term

A this $\mathcal{E}\mathcal{H}$ *term* possible in 4-dimensions only!

A New $\mathcal{E}\mathcal{H}$ -term localised at points with $\chi \neq 0$ A KK-exchange between graviton vertex and a $D7$ -brane Momentum D7 $k_I \, \zeta$ Space $\sum_{\geq R_1^{-1}} k_3$ $y=0$ $y=y_{p}$ Graviton

 k_3 $\sqrt{2}$

vertex

Worldsheet

Kähler moduli STABILISATION within a concrete Global Model: $(GKL \& Pramod Shukla \quad 2203.03362)$

<u>Kreuzer-Skarke</u> (KS) in hep-th/0002240 introduced toric methods to construct Calabi-Yau manifolds in terms of Reflexive Polyhedra

...exploring the KS dataset ... \Rightarrow

$$
\frac{\text{Explicit } CY_3 \text{ Manitoba}}{h^{1,1} = 3, h^{2,1} = 115, \chi = -224}
$$
\n
$$
\hat{\xi} = -\frac{\chi \zeta[3]}{2(2\pi)^3 g_s^{3/2}} = \frac{14 \zeta[3]}{\pi^3 g_s^{3/2}}, \qquad \frac{\hat{\xi}}{\hat{\eta}} = -\frac{\zeta[3]}{\zeta[2]} \frac{1}{g_s^{2}}
$$

Assuming a basis of smooth divisors D_1, D_2, D_3 , the case under consideration gives intersection polynomial with only one non-zero intersection:

 $I_3 = 2D_1D_2D_3$

with Kähler form $J = 2\sum_{k=1}^{3} t^{k}D_{k}$, and 6d-volume:

$$
\mathcal{V} = 2 t^1 t^2 t^3 = \frac{1}{\sqrt{2}} \sqrt{\tau_1 \tau_2 \tau_3}
$$

 $(t^{i} \rightarrow 2$ -cycle, $\tau_{i} \rightarrow 4$ -cycle moduli, subject to $\tau_{i} = 2 t^{j} t^{k}$)

 \triangle Kähler potential including α' and loop corrections:

$$
\mathcal{K}(T_i, S, z_a) = -\log\{-i(S - \bar{S})\} - 2\ln\mathcal{U} + K_{cs}(z_a) \qquad (2)
$$

$$
\mathcal{U}(T_i, S) = \mathcal{V} + \frac{\hat{\xi}}{2} + \mathcal{U}_1 \tag{3}
$$

with $\mathcal{U}_1(S, T^i)$ incorporating any loop corrections.

Computation of V_F *requires inverse Kähler metric* (*basis* S, T^i, z^a)

$$
\mathcal{K}^{A\bar{B}} = \begin{pmatrix} \tilde{\mathcal{P}}_1 & k_{\alpha} \tilde{\mathcal{P}}_2 & \mathcal{O} \\ k_{\alpha} \tilde{\mathcal{P}}_2 & k_{\alpha} k_{\beta} \tilde{\mathcal{P}}_3 - k_{\alpha \beta} \tilde{\mathcal{P}}_4 & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & K_{cs}^{i\bar{j}} \end{pmatrix}
$$
(4)

 \Rightarrow *block-diagonal for* $K_{cs}^{i\bar{j}}$ *but* S and T_i (V) $mix : \tilde{P}_I = \tilde{P}_I(V, S)$.

$$
\frac{\text{Master formula for F-term potential } (generic \mathcal{U}_1)}{\Downarrow}
$$
\n
$$
V_{\alpha' + \log} = e^{\mathcal{K}} \left(\frac{3\mathcal{V}}{2\mathcal{U}^2} \left(1 + \frac{\partial \mathcal{U}_1}{\partial \mathcal{V}} \right)^2 \frac{4\mathcal{V}^2 + \mathcal{V}\hat{\xi} + 4\hat{\xi}^2}{\mathcal{V} - \hat{\xi}} - 3 \right) |W_0|^2
$$

For α' and log corrections $\mathcal{U}_1 = -\hat{\eta} + \hat{\eta} \log \mathcal{V}$:

$$
V_{\alpha'+\log} = 12g_s e^{K_{cs}} |W_0|^2 \hat{\xi} \frac{\mathcal{V}^2 + 7\hat{\xi}\mathcal{V} + \hat{\xi}^2}{\left(\mathcal{V} - \hat{\xi}\right)\left(2\mathcal{V} + \hat{\xi}\right)^4}
$$

$$
-\frac{3\kappa}{2} |W_0|^2 \frac{2\hat{\eta} - \hat{\eta}\log\mathcal{V}}{2\mathcal{V}^3} + \cdots
$$

$$
\frac{logarithmic}{}
$$

Large Volume Limit

$$
V_F~\approx~C\frac{\hat{\xi}-4\hat{\eta}+2\hat{\eta}\log(\mathcal{V})}{\mathcal{V}^3}
$$

Properties

- A Minimum exists for $\hat{\eta} < 0$.
- A Stabilisation at large volume:

$$
\mathcal{V}_{\min} = e^{\frac{7}{3} + \frac{\hat{\xi}}{2|\hat{\eta}|}} \sim e^{\frac{1}{g_s^2}}
$$

A For F-term potential, AdS-minimum

$$
(V_F)_{\rm min} \propto \frac{\eta}{\mathcal{V}^3} < 0
$$

▲ Uplift to dS occurs through D-terms (see Lüst et al *hep-th/0609211*) associated with universal $U(1)$'s of D7-stacks:

$$
V_{\mathcal{D}} = \frac{g_{D7_i}^2}{2} \left(Q_i \partial_{T_i} K + \sum_j q_j |\Phi_j|^2 \right)^2, \ \frac{1}{g_{D7_i}^2} = \text{Re} T_i + \cdots
$$

Minimising the total potential:

 $V_{\text{eff}} = V_F + V_D$

 \Rightarrow a minimum and a maximum defined by the double-valued Lambert W-function $(we^w = z)$:

$$
\mathcal{V}_{\min} = \frac{\hat{n}}{d} \mathbf{W_{0/-1}} \left(\frac{d}{\hat{n}} e^{\frac{7}{3} - \frac{\hat{\xi}}{2\hat{n}}} \right)
$$

This dramatically constrains acceptable string vacua (fluxes etc)

Inflation

Hybrid scenario with open string states at D7-brane intersections playing the role of waterfall fields, (Antoniadis, Lacombe, GKL 2109.03243): $V_x \sim m^2(\mathcal{V}) \chi^2 + \lambda(\mathcal{V}) \chi^4$

A Blue curve: waterfall field χ trajectory (inflaton: $\phi \propto \log V$)

[⋆] *IIB/F-theory:*

• Stabilisation of Kähler Moduli possible with Perturbative Corrections only:

$$
\mathcal{K} = -2\ln\left(\mathcal{V} + \hat{\xi}/2 + \hat{\eta}\ln\mathcal{V}\right) + \cdots
$$

Origin of log-corrections:

Induced Einstein-Hilbert terms from R^4 -couplings in 10-d theory. This $\mathcal{E}\mathcal{H}\text{-term} \quad \exists \text{ in } 4d \text{ only!}$

⇓

 \star *induced* \mathcal{EH} -term ... indispensable element for a: 4d de Sitter Universe

★ Hybrid Inflation with $\phi \sim \log V$ role of the inflaton

The analysis of the divisor topologies using *cohomCalg* shows that divisors are of K3 and SD types and can be represented by the following Hodge diamonds:

Cancellation of all D7-charges

Introduce N_a D7-branes wrapped around divisors D_a and orientifold images ^D′a (*0811.2936*)

$$
\sum_{k} N_{k} ([D_{k} + D'_{k}]) = 8[O7]
$$

D7-branes and O7-planes also give rise to D3-tadpoles which receive contributions also from background 3-form fluxes

Assuming simple case:

D7-tadpoles are cancelled by placing $4\,D7 + D7'$ -branes on top of O7-plane:

$$
N_{D3} + \frac{1}{2} N_{\text{flux}} + N_{\text{gauge}} = \frac{1}{4} (O3 + \chi(O7))
$$

Example

Specific brane setting involving 2 stacks of D7-branes wrapping the divisors D_1, D_6 in the basis,

$$
8[O7] = 4([D_1 + D'_1]) + 4([D_6 + D'_6])
$$

D3 tadpole condition

$$
N_{D3} + \frac{1}{2} N_{flux} + N_{gauge} = 12
$$

Work supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (Project Number: 2251).