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1. this is a talk about BSM chez les leptons (puzzling mν/flav. diag. anomalies...)

LFV = flavour-changing contact interactions of charged leptons (FCNC for charged leptons)

2. LFV should occur : no symmetries forbid it, if add mν to SM.
... but we have not seen it (not know rates)

3. ν expts and LFV give complementary info about leptonic NP
...so...by measuring LFV rates, what can one learn about leptonic NP?
Ideally: reconstruct the NP Lagrangian. But how close can we really get?



What we know/what we can learn

some processes current constraints on BR future sensitivities
µ→eγ < 4.2× 10−13 6× 10−14

(MEG)

µ→eēe < 1.0× 10−12
(SINDRUM) 10−16

(202x, Mu3e)

µA → eA < 7× 10−13 Au, (SINDRUMII) 10−(16→?)
(Mu2e,COMET)

10−(18→?)
(PRISM/PRIME/ENIGMA)

K+ → π+µ̄e < 1.3× 10−11
(E865) 10−12

(NA62)

...
B+ → µ̄ν < 1.0× 10−6

(Belle) ∼ 10−7
(BelleII)

τ → ℓγ < 3.3, 4.4× 10−8 few×10−9
(Belle-II)

τ → 3ℓ < 1.5− 2.7× 10−8 few×10−9
(Belle-II, LHCb?)

τ → ℓ{π, ρ, φ,K, ...} <∼ few× 10−8 few×10−9
(Belle-II)

τ →...

h → τ±ℓ∓ < 1.5, 2.2× 10−3
(ATLAS/CMS)

h → µ±e∓ < 6.1× 10−5
(ATLAS/CMS)

Z → e±µ∓ < 7.5× 10−7
(ATLAS)

µA → eA ≡ µ in 1s state of nucleus A converts to e



highlights of that table(for this talk)

1. restrictive bounds on three µ → e processes, with

Γ(µ → 3e)

Γ(µ → eν̄ν)
<∼ 10−12 ⇒ ΛNP

>∼ 103〈v〉 ∼ 100 TeV

upcoming expts aim for BR ∼ 10−16 ⇒ ΛNP ∼ PeV.
promising for discovery of LFV?

2. bounds on a multitude of τ → {e, µ} processes

Γ(τ → 3e)

Γ(τ → eν̄ν)
× .2 <∼ few× 10−8 ⇒ ΛNP

>∼ 55〈v〉 >∼ 10 TeV

BelleII will improve sensitivities to ∼ 10−9.
promising for identification of LFV NP: complementary observables allow to
constrain most/all SMEFT coefficients. Provided NP not to heavy.

3. (bds on lepton and quark FC interactions: independent info)

4. (heavy particle LFV decays: independent info)



Outline

1. 3 processes at low energy (∼ mµ): µ→eγ, µ→eēe and µA→eA

2. parametrise in EFT⇒ 2 questions:

(a) will we see µ → e flavour change if its there?
(3 processes ≈ 12 constraints vs ∼ 90 µ → e operators with ≤ 4 legs below mW )

(b) what can we learn if we see it?

3. (assume NP heavy) use EFT to include SM loops between Λexpt → ΛNP

4. find that:

(a) (almost) all the 90 coefficients contribute to at least one of the processes,
suppressed at most by 10−3.

(b) a recipe to study this: use observable-motivated basis for the constrainable
subspace (⊥ to “flat directions”)



parametrising µ→eγ and µ→eēe

Two dipole operators constrained by µ→eγ:

δLmeg =
4GF√

2
mµ

(
CD,LµRσ

αβeLFαβ + CD,RµLσ
αβeRFαβ

)

BR(µ→eγ) = 384π2(|CD,L|2 + |CD,R|2) < 4.2× 10−13

⇒ |CD,X| <∼ 10−8
MEG expt, PSI



parametrising µ→eγ and µ→eēe

Two dipole operators constrained by µ→eγ:

δLmeg =
4GF√

2
mµ

(
CD,LµRσ

αβeLFαβ + CD,RµLσ
αβeRFαβ

)

BR(µ→eγ) = 384π2(|CD,L|2 + |CD,R|2) < 4.2× 10−13

⇒ |CD,X| <∼ 10−8
MEG expt, PSI

µ→eLēe : add 2
√
2GF

[
CV,LL(eγ

αPLµ)(eγαPLe)+CV,LR(eγαPLµ)(eγαPRe)+CS,RR(ePRµ)(ePRe)

]

(e relativistic ≈ chiral, neglect interference between eL, eR)

e

ē

eL

µ e

eL

e

µ
BR =

|CS,RR|2

8
+ (64 ln

mµ

me

− 136)|eCD,R|2

+2|CV,LL+4eCD,R|2+ |CV,LR+4eCD,R|2+{L ↔ R}
≤ 10−12 ⇒ CSXX , CV XY

<∼ 10−6
SINDRUM, PSI

⇒ µ→eγ + µ→eēe give 8 contraints
distinguish operators via angular correlations in final state OkadaOkomuraShimizu



µA→eA : sensitive to µ→e on quarks

• µ− captured by Al nucleus, tumbles down to 1s. (r ∼ Zα/mµ
>∼ rAl)

• in SM: muon “capture” µ+ p → ν + n, or decay-in-orbit
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Γ,X(ēΓPXN)(N̄ΓN)), converts to e
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≈ WIMP scattering on nuclei
1) “Spin Independent” rate ∝ A2

(amplitude ∝ ∑
N ∝ A) KitanoKoikeOkada

BRSI ∼ Z2|V p
AC̃

p
V + Sp

AC̃
p
S + V n

A C̃n
V + Sb

AC̃
n
S +DACD|2

SN
A , V N

A = integral over nucleus A of N distribution×lepton wavefns...

2) “Spin Dependent” rate ∼ ΓSI/A
2

(sum over nucleons ∝ spin of only unpaired nucleon)

BRSD ∼ ...|C̃N
A + 2C̃N

T |2 CiriglianoDavidsonKuno

HoferichterMenendezNoel



so Lagrangian at exptal scale (for precisely measured µ → eL observables)

δL = 2
√
2GF

[
CDR(mµeσ · FPRµ) + CSRR(ePRµ)(ePRe) + CV LR(eγ

α
PLµ)(eγαPRe)

+CV LL(eγ
α
PLµ)(eγαPLe) + CAlOAl + CAu⊥OAu⊥

]

(past expts used Titanium (≈Aluminium) and Gold)
What are OAl, OAu⊥?



so Lagrangian at exptal scale (for precisely measured µ → eL observables)

δL = 2
√
2GF

[
CDR(mµeσ · FPRµ) + CSRR(ePRµ)(ePRe) + CV LR(eγ

α
PLµ)(eγαPRe)

+CV LL(eγ
α
PLµ)(eγαPLe) + CAlOAl + CAu⊥OAu⊥

]

(past expts used Titanium (≈Aluminium) and Gold)
What are OAl, OAu⊥?
Four 2l2-nucleon operators can contribute to SpinIndep µA→eA:

δLSI = 2
√
2GF

[
C̃p

SRePRµpp + C̃n
SRePRµnn + C̃p

V Leγ
αPLµpγαp + C̃n

V Leγ
αPLµnγαn

]

but a target is sensitive to a linear combo.(≈direction in coeff space), determined by
“overlap integrals”,eg

OAl ≡
1

4
(ePRµpp+ ePRµnn+ eγαPLµpγαp+ eγαPLµnγαn)

OAu⊥ = combo of ops probed by Au, not Al.



take observable-motivated basis to ΛNP?

L →
(L ↔ R not identical in SMEFT, but not worry)

1. µ→eγ measures CD,R(mµ)

solving RGEs gives ~C(mµ)= ~C(mW )G(mµ,mW ), ⇒ define ~vµ→eγ(mµ,Λ)such that:

CDR(mµ) = ~C(Λ) · ~vµ→eγ(mµ,Λ)



take observable-motivated basis to ΛNP?

→
(L ↔ R not identical in SMEFT, but not worry)

1. µ→eγ measures CD,R(mµ)

solving RGEs gives ~C(mµ)= ~C(mW )G(mµ,mW ), ⇒ define ~vµ→eγ(mµ,Λ)such that:

CDR(mµ) = ~C(Λ) · ~vµ→eγ(mµ,Λ)

CD,X(mµ) = CD,X(mW )

(
1− 16

αe

4π
ln

mW

mµ

)

− αe

4πe
ln

mW

mµ

(
−8

mτ

mµ
Cττ

T,XX + Cµµ
S,XX + C2loop

)

+16
α2
e

2e(4π)2
ln2

mW

mµ

(
mτ

mµ
Cττ

S,XX

)

−8λaT
αe

4πe
ln

mW

2 GeV

(
−ms

mµ
Css

T,XX + 2
mc

mµ
Ccc

T,XX − mb

mµ
Cbb

T,XX

)
fTD

+16
α2
e

3e(4π)2
ln2

mW

2 GeV



∑

u,c

4
mq

mµ
Cqq

S,XX +
∑

d,s,b

mq

mµ
Cqq

S,XX




all coeffs on right side C(mW ) (basis vectors rotate and change length with scale)

λ = αs(mW )/αs(2GeV) ≃ 0.44, fTS ≃ 1.45, aS = 12/23, aT = −4/23.



take observable- motivated basis to ΛNP (if is a bad idea, SVP tell me why?)

L →
(L ↔ R not identical in SMEFT, but not worry)

1. µ→eγ measures CD,R(mµ)

solving RGEs gives ~C(mµ)= ~C(mW )G(mµ,mW ), ⇒ define ~vµ→eγ(mµ,Λ)such that:

CDR(mµ) = ~C(Λ) · ~vµ→eγ(mµ,Λ) , Λ = scale of RGEs)

2.for µ → eLeLeL, define
CV,LL(mµ) = ~C(Λ) · ~vµ→3eL

(mµ,Λ)

BR(µ→eēe) = 2|~C(Λ) · (~vµ→3eL
+ 4e~vµ→eγ)|2 + ...

etc for µ → eLeReR, and µ → eLeReL.

3.for, eg, µAl → eAl, define ~vµAl→eAl(Λ) to pick out correct quark operators:

BR(µAl → eAl) = #|~C(Λ) · (#~vµ→eγ + #~vµAl→eAl)|2

and a different ~vµAu→eLAu(Λ) for Gold, etc.

obtain a scale-dependent basis for the experimentally constrainable subspace;
the “flat directions” (experimentally inaccessible) are orthogonal, and therefore
irrelevant.

Should be the finite-eigenvalue subspace of the correlation matrix.

what to do with this basis?



check a few things

1. Do the basis vectors stay orthogonal? =Do µ→eγ, µ→eēe and µA→eA give
complementary information about NP models?

(a) Yes, to O(10−3) in running 2 GeV→ mW

(b) But changing EFTs can give overlaps (diff. low-E operators can match to same high-E

operator ↔ measure same thing)

ex1: at mW , all low-E vector 4f operators match to penguins C
eµ
HE

, C
eµ
HL

.

ex2: in matching at 2 GeV:

〈p|ūu|p〉 = 〈n|d̄d|n〉 (isospin ?)

but also:〈p|d̄d|p〉 ≃ 〈p|ūu|p〉 ≃ 〈n|d̄d|n〉 ≃ 〈n|ūu|n〉

2. the basis vectors change length...by O(1) factors, so ok
eg importance of dipole for µ→eēe grows with scale



Wanted to use EFT to take exptal info to models... so:

1. match to models, and explore what we can learn
(not need to run RGEs at each point in model space)

are some regions of 6-d space inaccessible to some models?

2. make plots of the excluded region in 6-d space ?
⇔ illustrate the reach and complementarity of experiments

3. ... ?( why don’t people already do this?)



Plotting complementarity and reach of µ→eγ, µ→eēe and µA→eA

Restrict to 3-d space of coefficients of ~vµ→eLγ, ~vµ→3eL, ~vµAu→eLAu(= z, x, y).
Current allowed region an ellipse around origin... write instead:

~C · ~vµ→eLγ ≡ |~vµ→eLγ|
v2 cos θ

Λ2
NP

⇒ ΛNP → ∞ allowed

see 2204.00564



Summary

µ→eγ, µ→eēe and µA→eA have experimental sensitivity to only a few operators
at low energy, so:

1. worth to include RGEs at leading order, because allow to mix almost every
coefficient (in chiral basis) into the testables ones
⇒ almost every µ → e interaction below mW (otherwise flav. diag., ≤ 4 legs)
contributes at >∼ O(10−3) to µ→eγ and/or µ→eēe and/or µA→eA
( possible exceptions :ēµGG̃, ēµF F̃ , ēγµF∂F ...)

2. most directions in coefficient space are untestable (“flat”)
(not an EFT-problem, its a consequence of searching for NP under the
lamppost, affects model studies in same way.)

3. no physics in a basis choice; one should choose a convenient basis for the
calculation: a convenient basis for comparing models to µ → e flavour-changing
observables can be constructed from the observables. (It should span the
same subspace as the eigenvectors of the correlation matrix with finite non-zero
eigenvalues.)



BackUp



Operator basis mτ → mW : ∼ 90 operators

operator list:Kuno-Okada, +CiriglianoKitanoOTuzon
+BowmanChengLiMatis

Add QCD×QED-invar operators, representing all 3,4 point interactions of µ with e
and flavour-diagonal combination of γ, g, u, d, s, c, b. Y ∈ L,R.

mµ(eσ
αβPYµ)Fαβ dim 5

(eγ
α
PYµ)(eγαPY e) (eγ

α
PYµ)(eγαPXe)

(ePYµ)(ePY e) dim 6

(eγ
α
PYµ)(µγαPXµ) (eγ

α
PYµ)(µγαPXµ)

(ePYµ)(µPYµ)

(eγαPYµ)(fγαPY f) (eγαPYµ)(fγαPXf)

(ePYµ)(fPY f) (ePYµ)(fPXf) f ∈ {u, d, s, c, b, τ}
(eσPYµ)(fσPY f)

1

mt

(ePYµ)GαβG
αβ 1

mt

(ePYµ)GαβG̃
αβ

dim 7

1

mt

(ePYµ)FαβF
αβ 1

mt

(ePYµ)FαβF̃
αβ ...zzz...but ∼ 90 coeffs!

(PX, PY = (1 ± γ5)/2), all operators with coeff −2
√
2GFC.



EFT for Heavy LFV Physics...

ΛNP ≫ TeV

{Z,W, γ, g, h, t, f}
LSM +L(SM invar. operators,dim6)

mW ∼ mh ∼ mt

{γ, g, f}

LQED×QCD +L(3→4 legged QCDxQED invar. ops) ∼ 90 of them!

2 GeV ∼ mc,mb,mτ

L(n, p, π, γ, e, µ) +L(3or4 legged QED invar. ops)

data (µ→eγ, µ→eēe, µA→eA)



Including RGEs
eg below mW : 1-loop QED + QCD (+2-loop QED V→D)

µ e

f1

f2 f2

µ e

f1

f2 f2

µ e

f2 f2 µ e µ e

µ e

f2 f2

µ e

f2 f2

µ e

f2 f2

µ
∂

∂µ
~C =

αs

4π
~CΓs +

αem

4π
~CΓ

QCD: not mix ops, should resum ⇒ multiplicative renorm S,T ops: diagonal D
QED: does mix ops, but αem ≪ , solve perturbatively

~C(mµ) = ~C(mW )G , G = D(1− αe

4π
Γ+

α2
e

32π2
ΓΓ+ ...



And models may not generate at tree level operators expts probe...
ex: µA→eA in a model giving tensor Cuu

T (eσPRµ)(uσu) at weak scale

1: forget RGEs Match to nucleons N ∈ {n, p} as C̃NN
T ≃ 〈N |ūσu|N〉Cuu

T
<∼

3
4C

uu
T

⇒ BR(µA → eA) ≈ BRSD ≈ 1
2
|Cuu

T
|2 nuclear matrix elements:

EngelRTO, KlosMGS

2: include RGEs

T

e

µ

u

u

+... ⇒Cuu
T (uσu)(eσPY µ) S

e

µ

q

q

64αe
4π log mW

mτ
Cuu

T (uu)(ePY µ)

∆Cuu
S (mτ) ∼ 1

7C
uu
T (mW )

Then match to nucleons: C̃NN
S = 〈N |ūu|N〉∆Cuu

S ∼ Cuu
T so C̃pp

S
>∼ C̃pp

T ,

BR(µA → eA) ≈ BRSI ∼ Z2|2Cuu

T |2 ∼ 103BRSD

loops can change Lorentz structure/external legs ⇒ different operator whose
coefficient better constrained



Quantifying which targets give independent information (on nucleons)

1. neglect Dipole (better sensitivity of µ→eγ (MEGII) and µ→eēe(Mu3e).

remain to determine: ~C ≡ (C̃pp
V R, C̃

pp
SL, C̃

nn
V R, C̃

nn
SL)

2. recall that

BRSI(Aµ → Ae) ∝
∣∣∣~C · ~vA

∣∣∣
2

where target vector for nucleus A

~vA ≡
(
V

(p)
A , S

(p)
A , V

(n)
A , S

(n)
A

)

3. So first experimental search (eg on Aluminium) probes projection of ~C of ~vAl

... next target needs to have component ⊥ to Aluminium!
⇔ plot misalignment angle θ between target vectors

4. how big does θ need to be?

overlap integrals have theory uncertainty: ∆θ

{
nuclear ∼ 5%(KKO)

NLO χPT ∼ 10%(?)
Both vectors uncertain by ∆θ; need misaligned by 2∆θ ≈ 10 → 20%



Current data+ theory uncertainty ∼ 10%: two targets give ∆θ > 0.2
BR(µAu → eAu) ≤ 7× 10−13 (Au : Z = 79)
BR(µT i → eT i) ≤ 4.3× 10−12 (T i : Z = 22)

Z         

0 20 40 60 80

  
  
  
  
  
 

θ

0

0.05

0.1

0.15

0.2

0.25

0.3

 

~vA = (V
(p)
A , S

(p)
A , V

(n)
A , S

(n)
A ), and BR ∝ |~vA · ~C|2

~vAu · ~vZ ≡ |~vAu||~vZ| cos θ ...plot θ on vertical axis



In the future...with a 5% theory uncertainty:

First target of Mu2e, COMET: Aluminium (Z=13, A=27)
v̂Al ≈ 1

2(1, 1, 1, 1) (recall C̃
pp
V , C̃

pp
S , C̃nn

V , C̃nn
S )

basis of three other “directions”:

v̂np ≡ 1

2
(−1,−1, 1, 1)

v̂V S ≡ 1

2
(1,−1, 1,−1)

v̂IsoSV ≡ 1

2
(−1, 1, 1,−1)
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probe 3 combinations of SI coeffs



All current data... BR(µAu → eAu) ≤ 7× 10−13 (Au : Z = 79)
BR(µT i → eT i) ≤ 4.3× 10−12 (T i : Z = 22)
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BR(µPb → ePb) ≤ 4.6× 10−11

BR(µS → eS) ≤ 7× 10−11
S = Sulpher, Z = 16

BR(µCu → eCu) ≤ 1.6× 10−8
Cu = Copper, Z = 29



But what happens when match nucleons to quarks?
By measuring µA→eA on different targets, could determine coefficients of LFV ops
with vector and scalar currents of n or p.

Match to quarks: (ΓO ∈ {I, γ5, γα, γβγ5, σ
αβ})

〈N(Pf)|q̄(x)ΓOq(x)|N(Pi)〉 = GN,q
O 〈N |N̄(x)ΓON(x)|N〉

= GN,q
O uN(Pf)ΓOuN(Pi)e

−i(Pf−Pi)x

But for scalar ops, Gp,u
S = Gn,d

S ≃ Gp,d
S ≃ Gn,u

S

so need great precision to differentiate LFV ops with scalar currents of u or d :(
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sensitivity vs constraint
Suppose that BR(µAl → eAl) <∼ 10−14, and :

δL(mW ) = Cuu
T (eσPY µ)(uσu) + Cuu

S (ePY µ)(uu)

uu

T,L  C710
1.5 1 0.5 0 0.5 1 1.5

u
u

S
,L

 C
7

1
0

0.1

0.05

0

0.05

0.1

  

Cuu
T , Cuu

S constrained to live inside blue (red) ellipse at exptal scale (at mW ):
sensitivity to Cuu

S = cut ellipse @ Cuu
T = 0; constraint = live in projection of ellipse

onto Cuu
S axis.



“Accidental cancellations” and “naturalness” in EFT

( “accidental” cancellations occur; in 1-loop RGEs give, for coeff.s at ∼mW of

OD,L = mµ(eσ · FPLµ), Oττ
T,LL = (eσPLµ)(τσPLτ):

BR(µ→eγ) ≈ |0.938CD,L + 0.981Cττ
T,LL + ...|2 ) ⇒

If imagine that NP knows about all the SM parameters, but not about the scale
at which you do expts, could argue that RG-stable cancellations in EFT can be
“natural”.
(caveat: NP does know about all the mass scales in the theory, which often determine the scales in

the logs...)

So if resum RGs, cancellations among coeff.s with same anom dim are ok?
If not resum, can allow cancellations among all coeff.s who multiply same log?

Interest of this argument, is that forbidding “unnatural” calcellations transforms
a single exptal bound into many bounds...but unnatural cancellations occur, see
green parenthese: dipole is tree, tensor is log-enhanced loop.



...


