Salvador Centelles Chuliá, Christian Döring, Werner Rodejohann and Ulises Saldaña-Salazar

Max-Planck Institut für Kernphysik

#### Natural axion model from flavour

#### Planck 2022







**2005.13541;** 10.1007/JHEP09(2020)137

### Motivation

- Naturalness: Dirac vs 't Hooft
  - Dirac: small parameters are unnatural (inspirehep id: 1227).
  - 't Hooft: small parameters are natural only if protected by symmetry (inspirehep id: 144074).
- SM and many of its popular extensions face naturalness issues
  - Hierarchy problem (nice intro in inspirehep id: 859892)
  - Small neutrino masses (model dependent)
  - Fermion mass hierarchy
  - Strong CP problem
  - ...

#### Fermion mass hierarchy

- Striking pattern in the fermion masses
- Yukawas are technically natural
  - If  $Y \rightarrow 0$  chiral symmetry is restored
  - Running of Y is proportional to itself
  - But such a pattern is calling for an explanation!
  - Many proposals in the literature
    - Each set of fermions may receive its mass from a different Higgs

$$\begin{split} m_t &\sim \Lambda_{EW} \\ m_b, m_\tau, m_c \sim 10^{-2} \Lambda_{EW} \\ m_s, m_\mu &\sim 10^{-3} \Lambda_{EW} \\ m_d, m_u, m_e &\sim 10^{-5} \Lambda_{EW} \\ m_\nu &< 10^{-13} \Lambda_{EW} \end{split}$$

# Strong CP problem

- QCD allows the CP Violating term heta  $G_{\mu
  u}$   $ilde{G}^{\mu
  u}$ 
  - Neutron electric dipole moment measurements:  $\theta < 10^{-10}$
  - Is this a hint of new physics?
- Popular solution: the axion
  - $\theta$  is promoted to a dynamical field, the axion
  - Can be dark matter too
  - Requires an additional global, anomalous  $U(1)_{PQ}$

### The proposal

- 4HDM with sharp vev hierarchy
- Each fermion set couples to one Higgs
- Both require symmetry protection
- A flavoured  $U(1)_{PQ}$  can do all!

|  |         | Fields       | $SU(2)_L \times U(1)_Y$ | $U(1)_{\rm PQ}$ |
|--|---------|--------------|-------------------------|-----------------|
|  | Leptons | $L_i$        | (2, -1/2)               | l               |
|  |         | $ u_{R,i}$   | (1, 0)                  | 0               |
|  |         | $e_R$        | (1, -1)                 | 2l              |
|  |         | $\mu_R$      | (1, -1)                 | 2l-k            |
|  |         | $	au_R$      | (1, -1)                 | 2l-2k           |
|  | Quarks  | $Q_i$        | (2, 1/6)                | q               |
|  |         | $u_R$        | (1, 2/3)                | q-l             |
|  |         | $c_R$        | (1, 2/3)                | q-l+2k          |
|  |         | $t_R$        | (1, 2/3)                | q-l+3k          |
|  |         | $d_R$        | (1, -1/3)               | q+l             |
|  |         | $s_R$        | (1, -1/3)               | q+l-k           |
|  |         | $b_R$        | (1, -1/3)               | q+l-2k          |
|  | Scalars | $\phi_t$     | (2, 1/2)                | 3k-l            |
|  |         | $\phi_b$     | (2, 1/2)                | 2k-l            |
|  |         | $\phi_{\mu}$ | (2, 1/2)                | k-l             |
|  |         | $\phi_d$     | (2, 1/2)                | -l              |
|  |         | $\chi$       | (1, 0)                  | k               |
|  |         | A            | ( <b>1</b> ,0)          | k/2             |

Fermion masses  $\left( \overline{Q}_1 \quad \overline{Q}_2 \quad \overline{Q}_3 \right) \begin{pmatrix} Y_{u,1} \phi_d & Y_{c,1} \phi_b & Y_{t,1} \phi_t \\ Y_{u,2} \tilde{\phi}_d & Y_{c,2} \tilde{\phi}_b & Y_{t,2} \tilde{\phi}_t \\ Y_{u,3} \tilde{\phi}_d & Y_{c,3} \tilde{\phi}_b & Y_{t,3} \tilde{\phi}_t \end{pmatrix} \begin{pmatrix} u_R \\ c_R \\ t_R \end{pmatrix}$ • Up type quarks receive mass from  $\phi_d$ ,  $\phi_b$ ,  $\phi_t$ • Down type quarks and charged leptons receive mass from  $\phi_d$ ,  $\phi_\mu \phi_b$  $\left( \overline{Q}_{1} \ \overline{Q}_{2} \ \overline{Q}_{3} \right) \begin{pmatrix} Y_{d,1} \phi_{d} \ Y_{s,1} \phi_{\mu} \ Y_{b,1} \phi_{b} \\ Y_{d,2} \phi_{d} \ Y_{s,2} \phi_{\mu} \ Y_{b,2} \phi_{b} \\ Y_{d,3} \phi_{d} \ Y_{s,3} \phi_{\mu} \ Y_{b,3} \phi_{b} \end{pmatrix} \begin{pmatrix} d_{R} \\ s_{R} \\ b_{P} \end{pmatrix} \quad \left( \overline{L}_{1} \ \overline{L}_{2} \ \overline{L}_{3} \right) \begin{pmatrix} Y_{e,1} \phi_{d} \ Y_{\mu,1} \phi_{\mu} \ Y_{\tau,1} \phi_{b} \\ Y_{e,2} \phi_{d} \ Y_{\mu,2} \phi_{\mu} \ Y_{\tau,2} \phi_{b} \\ Y_{e,3} \phi_{d} \ Y_{\mu,3} \phi_{\mu} \ Y_{\tau,2} \phi_{b} \end{pmatrix} \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{P} \end{pmatrix}$ • Neutrino masses come from a type-I seesaw  $Y_{\nu,ij} \overline{L}_i \tilde{\phi}_d \nu_{R,j} + \frac{M_{ij}}{2} \overline{\nu}_{R,i}^c \nu_{R,j}$ • No prediction for mixing (we just fit).

# FCNC

- Singular/flavour alignment Ansazt (see inspirehep ids: 1628834, 1723269)
- Columns of each mass matrix are assumed to be orthogonal to each other
- Under this Ansatz the tree-level FCNC are 0
- Loop corrections are small enough to escape constraints

Vev cascade

- The PQ symmetry is broken at a high scale  $f_a$
- $f_a$  induces a small vev for  $\chi$   $v_{\chi} \simeq \frac{\kappa_{AA\chi}v_A^2}{\mu_{\chi}^2 + \lambda_{\chi A}v_A^2}$
- $\phi_t$  is a SM-like Higgs.  $\mu_t^2 < 0$  leads to a standard EWSB
- $\mu_b^2$ ,  $\mu_\mu^2$ ,  $\mu_d^2 > 0$ . No mexican hat potential!

#### Vev cascade

- However, the interaction between  $\phi_t$ ,  $\phi_b$  and  $\chi$  induces a suppressed vev for  $\phi_b$   $v_b \simeq \frac{\kappa_{tb\chi}v_\chi v_t}{\mu_b^2 + (\lambda_{tb1} + \lambda_{tb2})v_t^2 + \lambda_{b\chi}v_\chi^2}$ .
- Sequentially,  $\phi_b$  induces a vev to  $\phi_{\mu}^{v_{\mu}} \simeq \frac{\kappa_{b\mu\chi}v_{\chi}v_{b}}{\mu_{\mu}^2 + (\lambda_{t\mu1} + \lambda_{t\mu2})v_t^2 + \lambda_{\mu\chi}v_{\chi}^2}$ ,
- And  $\phi_{\mu}$  to  $\phi_{d}$   $v_{d} \simeq \frac{\kappa_{\mu d\chi} v_{\chi} v_{\mu}}{\mu_{d}^{2} + (\lambda_{td1} + \lambda_{td2}) v_{t}^{2} + \lambda_{d\chi} v_{\chi}^{2}}$
- The vev hierarchy implies a fermión mass hierarchy with order 1 Yukawas!



#### Axion-fermion couplings

- There is a diagonal coupling between the axion and the fermions (suppressed by  $f_a$ )
- It is a *flavoured* axion, but non-diagonal interactions can be rotated away
  - Left handed charges are generation-independent
  - Right-handed mixing is unphysical unless a new gauge interaction is added

$$\mathcal{L}_{a\psi} = \frac{\partial_{\mu}a}{2f_a} \left[ \bar{\psi}_i \gamma^{\mu} \left( C_{\psi ij}^V - C_{\psi ij}^A \gamma_5 \right) \psi_j \right], \quad C_{\psi ij}^{V,A} = \frac{1}{2N} \left( \mathbf{U}_L^{\psi\dagger} \mathbf{X}_{\psi L} \mathbf{U}_L^{\psi} \pm \mathbf{U}_R^{\psi\dagger} \mathbf{X}_{\psi R} \mathbf{U}_R^{\psi} \right)_{ij}$$

## Summary and conclusions

- 4HDM framework
- U(1)<sub>PQ</sub> has a double role: solves the Strong CP problem and generates the vev hierarchy which in turn explains the fermion mass hierarchy with order one Yukawas
- Singular alignment prevens unwanted FCNC

