

Four-top final states as a probe of Two-Higgs-Doublet models

Henning Bahl, Steven Paasch

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ Q @ 1/15

Motivation

- The $t\bar{t}t\bar{t}$ cross-section can be used to constrain the Yukawa coupling of top quarks to Higgs bosons and can be enhanced by BSM contributions
- Four top production with $gg \to H \to t\bar{t}$ often have the largest branching ratios (large coupling)
- Existing BSM interpretations are limited to the alignment limit in selected models
- Implementation in the public code HiggsBounds which is now part of HiggsTools
- Study impact on Two-Higgs-Doublet models where four-top production places constraints on the low tanβ region

Outline

- Four-top final-states at CMS
- Cross-section fit formulas
- Monte-Carlo- and detector-simulation setup
- Preliminary results
- Outlook

Four-top final-states at CMS arxiv[1908.06463]

• We want to obtain upper limits on $\sigma(pp \to (t\bar{t}, tW, t) + X) \times BR(X \to t\bar{t})$, using Monte-Carlo and detector simulations.

Four-top final-states at CMS

• We specifically look at the subchannels of $t\bar{t}H$, tH and tWH production.

Cross-section of sub-channels

- ttH and tWH can not be measured independently, so tWH should be included
- The cross-section of tH is of similar size as ttH and should not be neglected

Effective model description

• Effective Lagrangian similar to Higgs-characterization model: arxiv:[1306.6464]

$$\mathcal{L}_{eff} = \mathcal{L}_{Yuk} + \mathcal{L}_V \tag{1}$$

$$\mathcal{L}_{Yuk} = -\frac{y_t^{SM}}{\sqrt{2}} \bar{t} (c_t + i\gamma_5 \tilde{c}_t) tX \tag{2}$$

$$\mathcal{L}_{V} = c_{V} X \left(\frac{M_{Z}^{2}}{\nu} Z_{\mu} Z^{\mu} + 2 \frac{M_{W}^{2}}{\nu} W_{\mu}^{+} W^{-\mu} \right)$$
(3)

- y_t^{SM} is the SM top-Yuakwa coupling, X denotes a generic Scalar and t,W,Z denote the top-quark and Vector-boson fields
- c_t, \tilde{c}_t, c_V are the CP-even and CP-odd coupling to top-quarks and Vector-bosons (rescaled to the SM)

1

Derive fit formulas for the total cross-section and in each signal region for the subchannels $tH, t\bar{t}H, tWH, ggH$:

$$\sigma \propto (a_1 c_V^2 + a_2 c_V c_t + a_3 c_t^2 + a_4 \tilde{c}_t^2) \cdot (b_1 c_t^2 + b_2 \tilde{c}_t^2)$$
(4)

Where the first bracket comes from the production and the second from the decay. We get:

$$\sigma \propto c_1 c_v^2 c_t^2 + c_2 c_V^2 \tilde{c}_t^2 + c_3 c_V c_t^3 + c_4 c_V c_t \tilde{c}_t^2 + c_5 c_t^4 + c_6 c_t^2 \tilde{c}_t^2 + c_7 \tilde{c}_t^4$$
(5)

All other possible terms are zero because of the non-interference of CP-even and CP-odd contributions

Cross-section fit formulas

The coefficients c_{1-7} can be extracted by calculation cross-sections for 7 different parameter points.

•
$$c_t = 1, \tilde{c}_t = 0, c_V = 0 \longrightarrow \sigma_1 = c_5$$

• $c_t = 0, \tilde{c}_t = 1, c_V = 0 \longrightarrow \sigma_2 = c_7$
• $c_t = 1, \tilde{c}_t = 1, c_V = 0 \longrightarrow \sigma_3 = c_5 + c_6 + c_7$
• $c_t = 1, \tilde{c}_t = 0, c_V = 1 \longrightarrow \sigma_4 = c_1 + c_3 + c_5$
• $c_t = 1, \tilde{c}_t = 0, c_V = 2 \longrightarrow \sigma_5 = 4c_1 + 2c_3 + c_5$
• $c_t = 1, \tilde{c}_t = 1, c_V = 1 \longrightarrow \sigma_6 = c_1 + c_2 + c_3 + c_4 + c_5 + c_6 + c_7$
• $c_t = 1, \tilde{c}_t = 1, c_V = 2 \longrightarrow \sigma_7 = 4c_1 + 4c_2 + 2c_3 + 2c_4 + c_5 + c_6 + c_7$

Monte-Carlo- and detector-simulation setup

- Use MadGraph5 to calculate the total cross-section σ_{tot} for each subchannel with 7 different coupling-configurations
- We us NNPDF3.0 for the Parton Distribution Functions
- We generate each configuration for masses of a generic scalar X between 350 and 1000 GeV by using the Higgs-characterization model with 50000-100000 events for each.
- The scalars can have couplings top quarks (c_t, \tilde{c}_t) and vector bosons (c_V)
- As a result the scalar can be either CP-even, CP-odd or CP-mixed, thus extending the original analysis

Monte-Carlo- and detector-simulation setup

- Using MadAnalysis we recast MadGraph5 results with an implementation of the analysis by *Fuks et al.* and application in *Maltoni et al.[arxiv:2104.09512]*
- We obtain the efficiency, which is the number of signal-events divided by the number of initial events:

$$\epsilon = \frac{N}{N_{\text{tot}}} \tag{6}$$

• The cross-section in each signal-region is then given by:

$$\sigma = \epsilon \cdot \sigma_{\text{tot}} \tag{7}$$

• The Limit on $\sigma \times BR$ is obtained from the number of signal events. E.g, in the CP-even case, we have

$$N_{\text{signal}} = c_t^4 \mathcal{L} \cdot \left[\sigma(t\bar{t}H, H \to t\bar{t}) \epsilon_{t\bar{t}H} + \sigma(tH, H \to t\bar{t}) \epsilon_{tH} + \sigma(tWH, H \to t\bar{t}) \epsilon_{tWH} \right]_{c_t = 1}$$

$$(8)$$

Monte-Carlo- and detector-simulation setup

• We combine the 14 signal regions into one region.

N_{ℓ}	N_{b}	N_{i}	Region	$t\bar{t}t\bar{t}$ (SM - CMS)					
$\tilde{2}$	2°	6	$\overline{SR1}$	1.89 ± 1.14	N_ℓ	N_b	N_{j}	Region	$t\bar{t}t\bar{t}$ (SM - CMS)
2	2	7	$\mathbf{SR2}$	1.04 ± 0.57	≥ 3	2	5	$\mathbf{SR9}$	0.66 ± 0.38
2	2	≥ 8	$\mathbf{SR3}$	0.67 ± 0.38	≥ 3	2	6	$\mathbf{SR10}$	0.33 ± 0.21
2	3	5	$\mathbf{SR4}$	1.51 ± 0.85	≥ 3	2	≥ 7	SR11	0.22 ± 0.13
2	3	6	$\mathbf{SR5}$	1.61 ± 0.90	> 3	> 3	4	SR12	0.56 ± 0.32
2	3	7	$\mathbf{SR6}$	1.14 ± 0.66	≥ 3	≥ 3	5	SB13	0.66 ± 0.38
2	3	≥ 8	$\operatorname{SR7}$	0.85 ± 0.47	≥ 3	≥ 3	>6	SR14	0.76 ± 0.45
2	≥ 4	≥ 5	$\mathbf{SR8}$	2.08 ± 1.23					

Figure: [arxiv:2104.09512]

Preliminary results

Good agreement of the theory predicted cross-section.

Preliminary results

- Slightly weaker limit but overall good agreement
- We sum up the SR of the cut-based analysis
- CMS limit uses BDT analysis and can combine signal regions more carefully

Work done

- We generated and recasted Monte-Carlo events for four-top final states with a generic scalar \boldsymbol{X}
- Derivation of Fit formulas for the total cross-section and in each signal region
- Upper-limits on the cross-section times branching fraction in the alignment limit

Outlook

- Upper-limits on the cross-section times branching fraction for CP-odd and CP-mixed states
- Implementation in the public code HiggsBounds
- Detailed study on the impact in Two-Higgs-Doublet models and other BSM models by four-top final states