Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Max-Planck-Institut für Kernphysik, Heidelberg

Planck 2022, Paris, 01/06/2022

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation

Two scalars Gildener Weinberg

Outlook

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

For a unitary and renormalizable QFT: Conformal invariance = classical scale invariance

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

For a unitary and renormalizable QFT: Conformal invariance ≡ classical scale invariance Cl. scale invariance ≡ no dimensionful couplings at tree level in the Lagrangian L

No (m_i^2,\ldots) , Yes $(y_i, \lambda_i, g_i,\ldots) \in \mathcal{L}$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

For a unitary and renormalizable QFT: Conformal invariance \equiv classical scale invariance \blacktriangleright Cl. scale invariance \equiv **no dimensionful** couplings

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Conformal symmetry

at tree level in the Lagrangian \mathcal{L}

No (m_i^2, \ldots) , Yes $(y_i, \lambda_i, g_i, \ldots) \in \mathcal{L}$ Extensions via (gauged) scalars [Hel+17]

tree level contribution

$$V^{(0)} = \frac{1}{N} \sum_{i,j,k,l} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l$$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking

Effective Potential

Gap-equations

Multiple scale generation Two scalars

tree level contribution

$$V^{(0)} = rac{1}{N} \sum_{i,j,k,l} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l$$

► 1-loop contributions (\overline{MS}) [Qui99]

$$V^{(1)} = \frac{1}{64\pi^2} \sum_{i} (-1)^{2s_i} n_i \ m_i^4 \left(\ln \left[\frac{m_i^2}{\bar{\mu}^2} \right] - c_i \right)$$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking

Effective Potential

Aultiple sca

generation Two scalars Gildener Weinbert

tree level contribution

$$V^{(0)} = \frac{1}{N} \sum_{i,j,k,l} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l$$

► 1-loop contributions (MS) [Qui99]

$$V^{(1)} = \frac{1}{64\pi^2} \sum_{i} (-1)^{2s_i} n_i \ m_i^4 \left(\ln \left[\frac{m_i^2}{\bar{\mu}^2} \right] - c_i \right)$$

 field dependent masses m_i depend on the particle content (spin) Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking

Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

tree level contribution

$$V^{(0)} = rac{1}{N} \sum_{i,j,k,l} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l$$

► 1-loop contributions (MS) [Qui99]

$$V^{(1)} = \frac{1}{64\pi^2} \sum_{i} (-1)^{2s_i} n_i \ m_i^4 \left(\ln \left[\frac{m_i^2}{\bar{\mu}^2} \right] - c_i \right)$$

 field dependent masses m_i depend on the particle content (spin)

•
$$m_i^2 \propto \lambda_i$$
 and $m_j^2 \propto g_j^2$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking

Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

tree level contribution

$$V^{(0)} = rac{1}{N} \sum_{i,j,k,l} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l$$

► 1-loop contributions (MS) [Qui99]

$$V^{(1)} = \frac{1}{64\pi^2} \sum_{i} (-1)^{2s_i} n_i \ m_i^4 \left(\ln \left[\frac{m_i^2}{\bar{\mu}^2} \right] - c_i \right)$$

 field dependent masses m_i depend on the particle content (spin)

•
$$m_i^2 \propto \lambda_i$$
 and $m_j^2 \propto g_j^2$

$$\Rightarrow~ {\it V}^{(0)} \propto \lambda_i$$
 and ${\it V}^{(1)} \propto \lambda_i^2,~g_j^2$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking

Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

• Generalized sph. coordinates for $\vec{\phi}$ via one radial (φ) and n-1 angular $(\vec{\vartheta})$ coordinates

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Generalized sph. coordinates for φ via one radial
 (φ) and n-1 angular (θ coordinates
- scale invariance: $m_i^2(\varphi, \vec{\vartheta}, \bar{\mu}) = \varphi^2 \hat{m}_i^2(\vec{\vartheta}, \bar{\mu})$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Generalized sph. coordinates for φ via one radial
 (φ) and n-1 angular (θ coordinates
- scale invariance: $m_i^2(\varphi, \vec{\vartheta}, \bar{\mu}) = \varphi^2 \hat{m}_i^2(\vec{\vartheta}, \bar{\mu})$

Symmetry breaking or criticality equations:

radial :
$$0 \stackrel{!}{=} \kappa(\vec{\vartheta}_0; \varphi_0) + A(\vec{\vartheta}_0; \varphi_0) + \frac{1}{2}B(\vec{\vartheta}_0; \varphi_0)$$

angular : $0 \stackrel{!}{=} \vec{\nabla}_{\vartheta} \left[\kappa(\vec{\vartheta}; \varphi_0) + A(\vec{\vartheta}; \varphi_0)\right]_{\vec{\vartheta}=\vec{\vartheta}_0}$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Generalized sph. coordinates for φ via one radial
 (φ) and n-1 angular (θ coordinates
- scale invariance: $m_i^2(\varphi, \vec{\vartheta}, \bar{\mu}) = \varphi^2 \hat{m}_i^2(\vec{\vartheta}, \bar{\mu})$

Symmetry breaking or criticality equations:

radial :
$$0 \stackrel{!}{=} \kappa(\vec{\vartheta}_0; \varphi_0) + A(\vec{\vartheta}_0; \varphi_0) + \frac{1}{2}B(\vec{\vartheta}_0; \varphi_0)$$

angular : $0 \stackrel{!}{=} \vec{\nabla}_{\vartheta} \left[\kappa(\vec{\vartheta}; \varphi_0) + A(\vec{\vartheta}; \varphi_0) \right]_{\vec{\vartheta} = \vec{\vartheta}_0}$

$$\Rightarrow f\left(\lambda_i(\bar{\mu}), \vec{\vartheta}\right) \stackrel{!}{=} 0$$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Generalized sph. coordinates for φ via one radial (φ) and n − 1 angular (ϑ) coordinates
- scale invariance: $m_i^2(\varphi, \vec{\vartheta}, \bar{\mu}) = \varphi^2 \hat{m}_i^2(\vec{\vartheta}, \bar{\mu})$

Symmetry breaking or criticality equations:

$$\begin{aligned} \text{radial}: \ 0 \stackrel{!}{=} \kappa(\vec{\vartheta}_0;\varphi_0) + \mathcal{A}(\vec{\vartheta}_0;\varphi_0) + \frac{1}{2}\mathcal{B}(\vec{\vartheta}_0;\varphi_0) \\ \text{angular}: \ 0 \stackrel{!}{=} \vec{\nabla}_{\vartheta} \left[\kappa(\vec{\vartheta};\varphi_0) + \mathcal{A}(\vec{\vartheta};\varphi_0)\right]_{\vec{\vartheta}=\vec{\vartheta}_0} \end{aligned}$$

$$\Rightarrow f\left(\lambda_i(\bar{\mu}), \vec{\vartheta}\right) \stackrel{!}{=} 0$$

 \Rightarrow Set the dimensionless coupling at, e.g. $M_{\rm Pl}$ and use RG-flow to evolve until both criticality equations are fulfilled

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

▶ radial :
$$\kappa + A + \frac{1}{2}B \stackrel{!}{=} 0$$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

λ_p(φ₀) > 0: no cancellations on tree-level ⇒ 1-loop gauge vs. scalar tree-level Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

- radial: \(\kappa + A + \frac{1}{2}B \frac{1}{2}0\)
 \(\kappa = \lambda \sin^4 \vartheta + \lambda_p \sin^2 \vartheta \cos^2 \vartheta + \lambda_s \cos^4 \vartheta \)
 \(A, B \lambda m_i^4 \lambda \lambda_i^2, g^4\)
- λ_ρ(φ₀) > 0: no cancellations on tree-level
 ⇒ 1-loop gauge vs. scalar tree-level
- λ_p(φ₀) < 0: cancellations on tree-level ⇒ allows for "pure" scalar breaking

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

- radial: \(\kappa + A + \frac{1}{2}B \frac{1}{2}0\)
 \(\kappa = \lambda \sin^4 \vartheta + \lambda_p \sin^2 \vartheta \cos^2 \vartheta + \lambda_s \cos^4 \vartheta \)
 \(A, B \lambda m_i^4 \lambda \lambda_i^2, g^4\)
- λ_ρ(φ₀) > 0: no cancellations on tree-level
 ⇒ 1-loop gauge vs. scalar tree-level
- λ_p(φ₀) < 0: cancellations on tree-level
 ⇒ allows for "pure" scalar breaking
- $\Rightarrow \lambda_{
 ho}(\varphi_0) \gtrless 0$ is important for classification

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

$$\blacktriangleright \mathcal{L} = \left(D_{\mu}\phi\right)^{\dagger}\left(D^{\mu}\phi\right) + \frac{1}{2}\partial_{\mu}S \ \partial^{\mu}S - V\left(\phi^{\dagger},\phi,S\right)$$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars Gildener Weinberg

 $\blacktriangleright \mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) + \frac{1}{2}\partial_{\mu}S \partial^{\mu}S - V (\phi^{\dagger}, \phi, S)$

1.0

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Two scalars

0.0

• reduces *n*-fields $\vec{\phi} = (\phi_1, \dots, \phi_n)^{\mathsf{T}}$ to $\vec{\Phi}_{\mathsf{flat}} = \vec{n}\varphi$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation

Two scalars

Gildener Weinberg

- reduces *n*-fields $\vec{\phi} = (\phi_1, \dots, \phi_n)^{\mathsf{T}}$ to $\vec{\Phi}_{\mathsf{flat}} = \vec{n}\varphi$
- ► condition: tree-level flat direction [GW76]

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Gap-equations

Multiple scale generation

Two scalars

Gildener Weinberg

- reduces *n*-fields $\vec{\phi} = (\phi_1, \dots, \phi_n)^{\mathsf{T}}$ to $\vec{\Phi}_{\mathsf{flat}} = \vec{n}\varphi$
- ► condition: tree-level flat direction [GW76]
- direct (tree-level potential): scalar contributions indirect (RG-running): all particle content

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

ntroduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars

Gildener Weinberg

- reduces *n*-fields $\vec{\phi} = (\phi_1, \dots, \phi_n)^{\mathsf{T}}$ to $\vec{\Phi}_{\mathsf{flat}} = \vec{n}\varphi$
- ► condition: tree-level flat direction [GW76]
- direct (tree-level potential): scalar contributions indirect (RG-running): all particle content

 \Rightarrow misses features of SSB:

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation

Two scalars

Gildener Weinberg

- reduces *n*-fields $\vec{\phi} = (\phi_1, \dots \phi_n)^{\mathsf{T}}$ to $\vec{\Phi}_{\mathsf{flat}} = \vec{n}\varphi$
- ► condition: tree-level flat direction [GW76]
- direct (tree-level potential): scalar contributions indirect (RG-running): all particle content

 \Rightarrow misses features of SSB:

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation

Two scalars

Gildener Weinberg

Outlook

Figure: Two scalars ϕ_1, ϕ_2 , with $U_1(1) \times U_2(1)$ and $q_1 = q_2$, $\lambda_{1,0} = \lambda_{2,0}$ and $g_{1,0} = g_{2,0} = 1$ and $\lambda_{p,0} > 0$.

8/11

RG-running generates separation between ren. scale Λ and scale of SSB φ₀

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

- RG-running generates separation between ren. scale
 Λ and scale of SSB φ₀
- Simplest example shows the "naive" λ_p dependency

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- RG-running generates separation between ren. scale
 Λ and scale of SSB φ₀
- Simplest example shows the "naive" λ_p dependency

Figure: Two scalars ϕ_1, ϕ_2 with $U_1(1) \times U_2(1)$ and $\lambda_{1,0} = 0.2, \ \lambda_{2,0} = 0.4, \ g_{1,0} = g_{2,0} = 0.8.$

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- RG-running generates separation between ren. scale
 Λ and scale of SSB φ₀
- Simplest example shows the "naive" λ_p dependency

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

Outlook

Figure: Two scalars ϕ_1, ϕ_2 with $U_1(1) \times U_2(1)$ and $\lambda_{1,0} = 0.2, \ \lambda_{2,0} = 0.4, \ g_{1,0} = g_{2,0} = 0.8.$

 Conformal sym. is anomalous, i.e. regulator breaks scale inv. explicitly

 Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB
- Incorporates the full RG-running

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB
- Incorporates the full RG-running
- Gap equations allow for intuitive description of SSB w.r.t. λ_{i,0}, g_{i,0}

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB
- Incorporates the full RG-running
- Gap equations allow for intuitive description of SSB w.r.t. λ_{i,0}, g_{i,0}
- Can relate 1-loop mass hierarchies (somewhat) analytically to λ_{p,0}

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB

. . .

- Incorporates the full RG-running
- Gap equations allow for intuitive description of SSB w.r.t. λ_{i,0}, g_{i,0}
- Can relate 1-loop mass hierarchies (somewhat) analytically to λ_{p,0}
- ► A lot more to understand for more complex cases

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

- Cl. scale invariant (conformal symmetric) model with dynamical scale generation via SSB
- Multiscalar Coleman-Weinberg (without approximations)
 - \Rightarrow all features of SSB

. . .

- Incorporates the full RG-running
- Gap equations allow for intuitive description of SSB w.r.t. λ_{i,0}, g_{i,0}
- Can relate 1-loop mass hierarchies (somewhat) analytically to λ_{p,0}
- ► A lot more to understand for more complex cases

Thank you for your attention!

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

Backup: Probing via Inflation

► Including gravity ⇒ Inflation potential with 2 external scalars

from 2012.09706, by Kubo, Kuntz, Lindner, Rezacek, Saake, Trautner.

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

[Akr+20]

Y. Akrami et al. "Planck 2018 results. X. Constraints on inflation". In: *Astron. Astrophys.* 641 (2020), A10. DOI: 10.1051/0004-6361/201833887. arXiv: 1807.06211 [astro-ph.CO].

[Ams+08]

C. Amsler et al. "Review of Particle Physics". In: *Physics Letters B* 667.1 (2008). Review of Particle Physics, pp. 1–6. ISSN: 0370-2693. DOI: https://doi.org/ 10.1016/j.physletb.2008.07.018. URL: https:

//www.sciencedirect.com/science/
article/pii/S0370269308008435.

[CW73]

Sidney R. Coleman and Erick J. Weinberg. "Radiative Corrections as the Origin of Spontaneous Symmetry Breaking". In: *Phys. Rev. D* 7 (1973), pp. 1888–1910. DOI: 10.1103/PhysRevD.7.1888. Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential Gap-equations

Multiple scale generation Two scalars Gildener Weinberg

[GW76]	Eldad Gildener and Steven Weinberg. "Symmetry breaking and scalar bosons". In: <i>Phys. Rev. D</i> 13 (12 1976), pp. 3333–3341.	Gap-equations of radiative symmetry breaking in classically scale invariant models
	DOI: 10.1103/PhysRevD.13.3333. URL:	Philipp Saake
	https://link.aps.org/doi/10.1103/	
	PhysRevD.13.3333.	Conformal symmetry
[Hel+17]	Alexander J. Helmboldt et al. "Minimal conformal extensions of the Higgs sector". In: JHEP 07 (2017), p. 113. DOI: 10.1007/JHEP07(2017)113. arXiv: 1603.03603 [hep-ph].	Spontaneous symmetry breaking Effective Potential Gap-equations Multiple scale generation Two scalars Gildener Weinberg Outlook
[Higa]	<pre>URL: https: //wiki.physik.uzh.ch/cms/latex: tikz.</pre>	
[Higb]	Higgs Mass. 2020. URL: https://pdg.lbl.gov/2020/listings/	

rpp2020-list-higgs-boson.pdf.

11/11

[Qui99]

Mariano Quiros. Finite temperature field theory and phase transitions. 1999. DOI: 10.48550/ARXIV.HEP-PH/9901312. URL: https://arxiv.org/abs/hepph/9901312.

Gap-equations of radiative symmetry breaking in classically scale invariant models

Philipp Saake

Introduction Conformal symmetry

Spontaneous symmetry breaking Effective Potential

Multiple scale generation Two scalars Gildener Weinberg