NEUTRON STAR HEATING AND THE $(g-2)_{\mu}$ discrepancy

Maura E. Ramirez-Quezada

In collaboration with: K. Hamaguchi & N. Nagata arXiv:2204.02413

1, June 2022

OUTLINE

1. Introduction

2. DM + $(g - 2)_{\mu}$ and DM capture in NS

3. DM Models for $(g - 2)_{\mu}$: I & II

4. Results

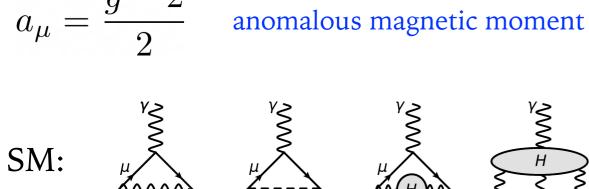
5. Summary

Muon g-2 Collab. arXiv: 2104.03281

Magnetic moment $\vec{\mu} = g\left(\frac{e}{2m}\vec{s}\right)$

q = 2At tree level $q \neq 2$ Radiative corrections

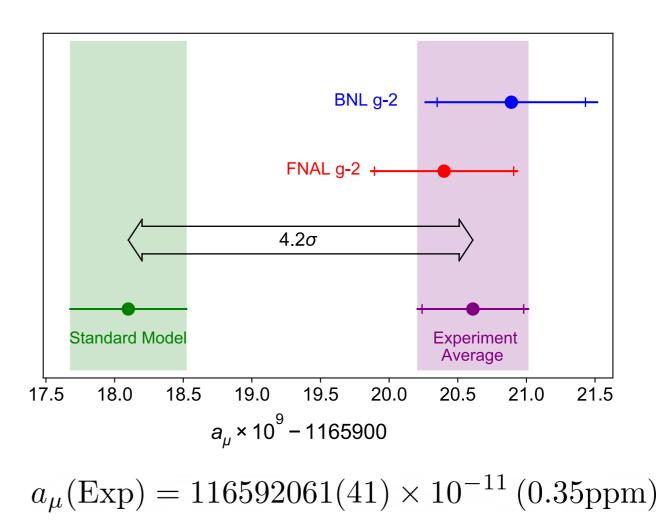
 $a_{\mu} = \frac{g-2}{2}$



Electromagnetic, Strong,

Weak iterations

 $a_{\mu}(SM) = 116591810(43) \times 10^{-11} (0.37 \text{ppm})$



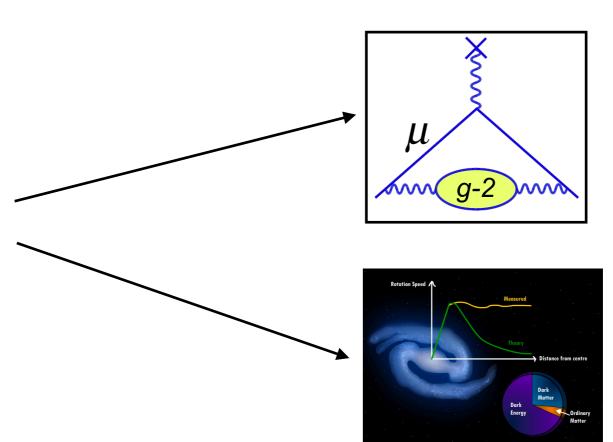
Discrepancy $\Delta a_{\mu} = 251(59) \times 10^{-11}$

New physics!?

Several BSM scenarios have been proposed in order to explain this discrepancy

weakly-interacting massive particles (WIMPs) coupling to muons

These scenarios could explain

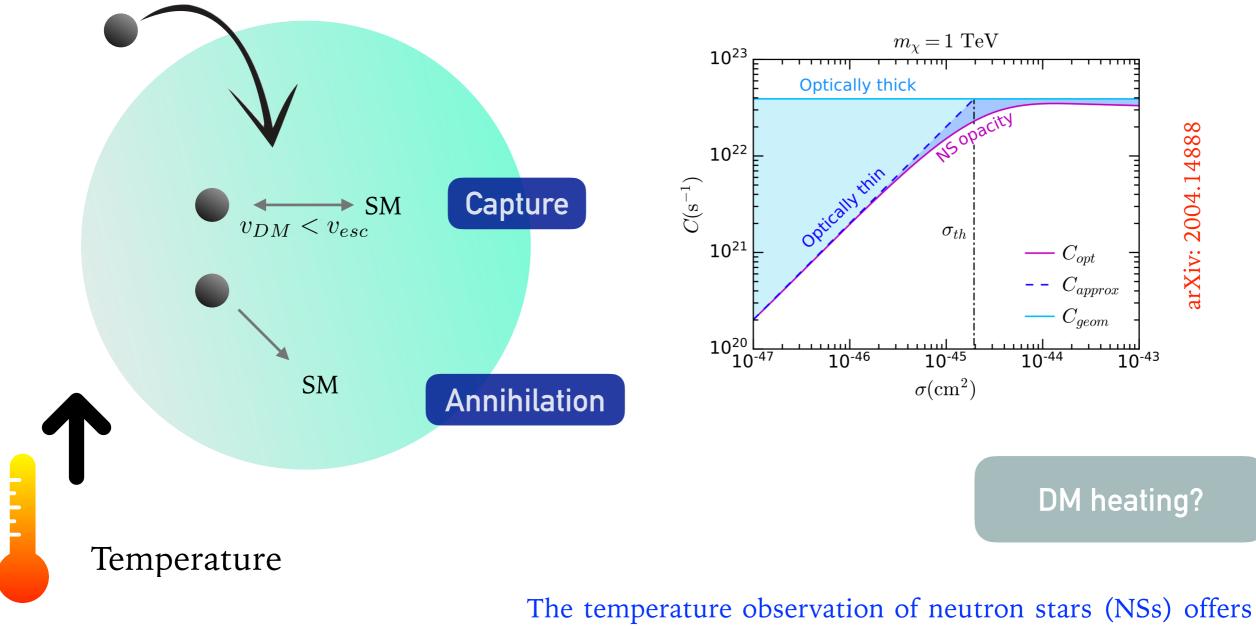


Large number of possibilities for this class of extension models:

- 1. Model I: Majorana fermion DM couples to the Higgs field at tree level.
- 2. Model II: Majorana fermion DM doesn't couples to the Higgs field at tree level.

 $M_{\chi} \sim 1 \,\mathrm{TeV}$

Considerable regions of parameter space required to explain $DM + (g - 2)_{\mu}$ are beyond the reach of the next-generation DM direct detection experiments



The temperature observation of neutron stars (NSs) offers a promising way to probe these scenarios by means of the DM accretion and annihilation in NS core.

MODEL I

$$\mathcal{L}_{int} = \mathcal{L}_{mass} + \mathcal{L}_{Yukawa} + \mathcal{L}_{quart}$$

$$\mathcal{L}_{mass} = -\frac{1}{2} \left(\chi_S, \xi_{D^0}, \eta_{D^0}\right) \mathcal{M}_{\chi} \begin{pmatrix} \chi_S \\ \xi_{D^0} \\ \eta_{D^0} \end{pmatrix} - M_{F_D} \xi_{D^-} \eta_{D^+} + h.c.$$

$$-M_e^2 |\tilde{e}|^2 - M_{\tilde{\nu}}^2 |\tilde{\nu}|^2 ,$$

$$\mathcal{M}_{\chi} = \begin{pmatrix} M_{F_S} & \frac{y_{1H}v}{\sqrt{2}} & \frac{y_{2H}v}{\sqrt{2}} \\ \frac{y_{1H}v}{\sqrt{2}} & 0 & M_{F_D} \\ \frac{y_{2H}v}{\sqrt{2}} & M_{F_D} & 0 \end{pmatrix}$$

$$0 < M_{\chi_1} \le M_{\chi_2} \le M_{\chi_3}$$

$$DM \text{ candidate}$$

$$\begin{pmatrix} \chi_S \\ \xi_{D^0} \\ \eta_{D^0} \end{pmatrix} = V_{\chi} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} .$$

$$Unitary \text{ matrix}$$

$$Unitary \text{ matrix}$$

$$Couples at tree level$$

$$\mathcal{L}_{\text{Yukawa}} = -\frac{h}{\sqrt{2}} \overline{\psi_i^0} \left[(C_{\chi hL})_{ij} P_L + (C_{\chi hR})_{ij} P_R \right] \psi_j^0$$
DM -muon
interaction
$$- \left\{ \overline{\psi_i^0} \left[y_1 (V_{\chi})_{1i} P_L + y_2^* (V_{\chi})_{2i}^* P_R \right] \mu \widetilde{e}^* + \text{h.c.} \right\}$$

$$- \left[y_1 (V_{\chi})_{1i} \overline{\psi_i^0} P_L \nu \widetilde{\nu}^* - y_2 \overline{\mu} P_L \psi^- \widetilde{\nu} + \text{h.c.} \right]$$

Field	Spin	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
χ_S	1/2	1	1	0
ξ_D	1/2	1	2	-1/2
η_D	1/2	1	2	1/2
\widetilde{L}	0	1	2	-1/2

DM-Higgs

DM-Higgs doesn't couple at tree level

1

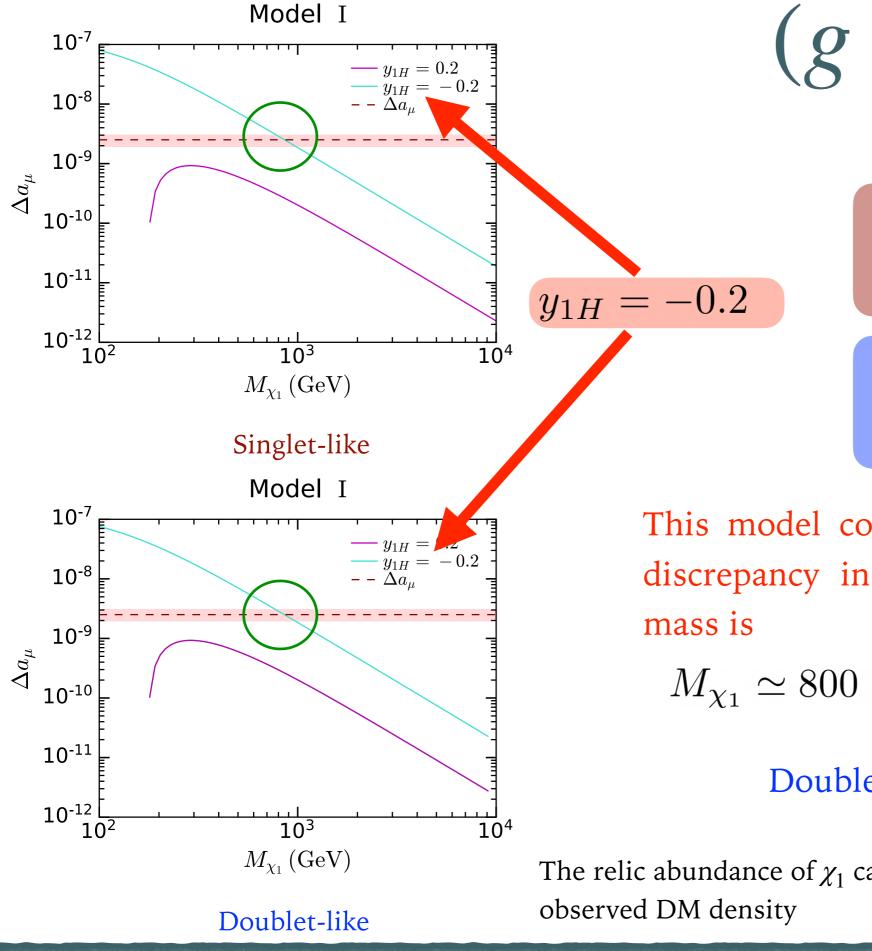
0

1

0

-1/2

1



$$-2)_{\mu}$$

$$M_{F_D}/M_{F_S} = 1.1$$

$$M_{F_S}/M_{F_D} = 1.1$$

This model could explain the observed discrepancy in the $(g-2)_{\mu}$ if the DM

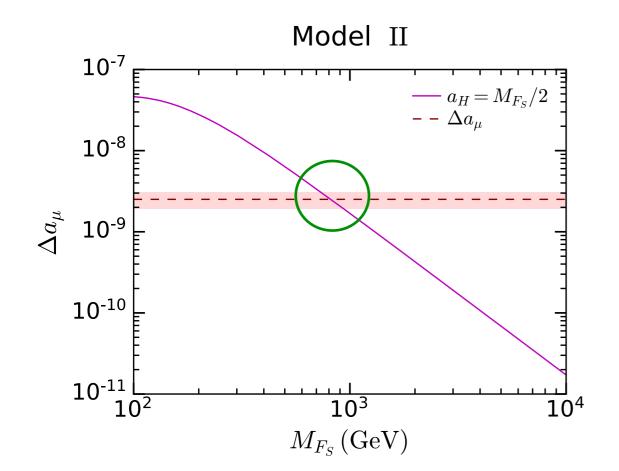
 $M_{\chi_1} \simeq 800 \text{ GeV}$ Singlet-like

Doublet-like

 $M_{\chi_1} \simeq 1 \,\mathrm{TeV}$

The relic abundance of χ_1 can coincide with the

arXiv: 1804.00009



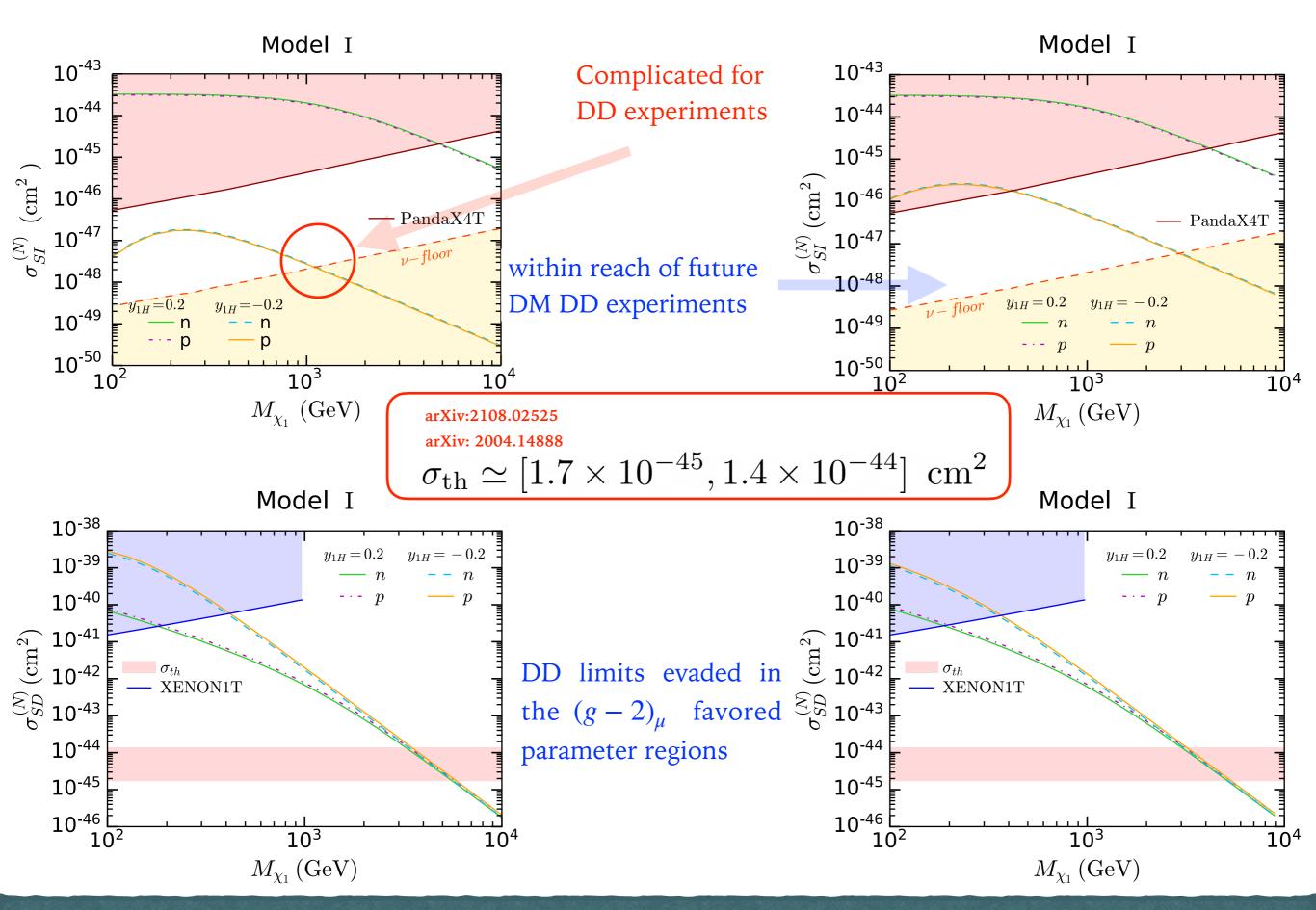
$$M_{\tilde{\bar{e}}}/M_{F_S} = 1.1$$

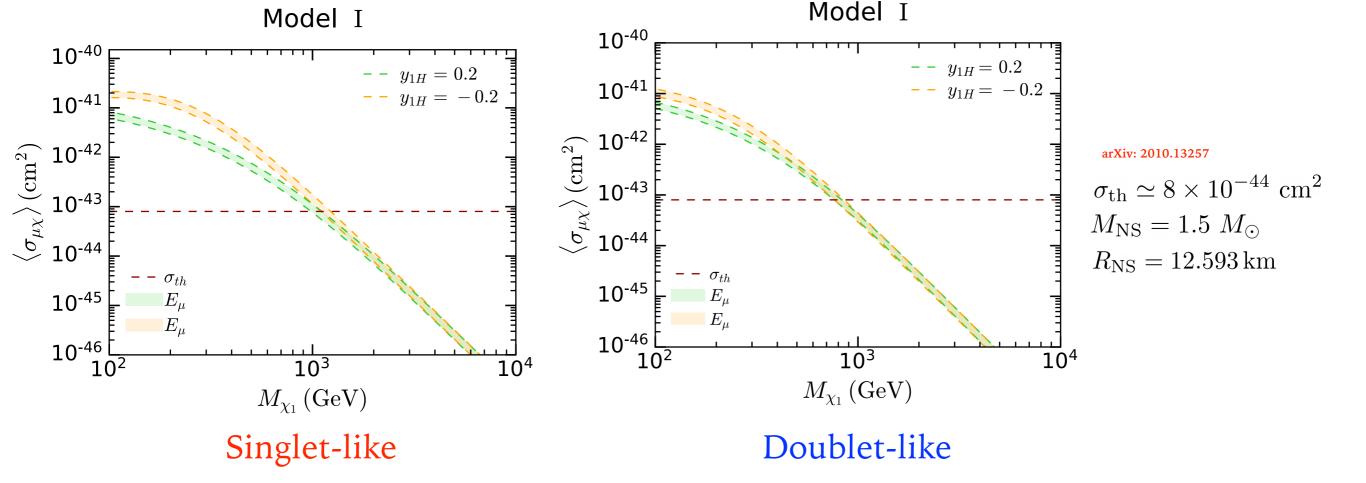
The observed deviation in the $(g-2)_{\mu}$ can be explained if the

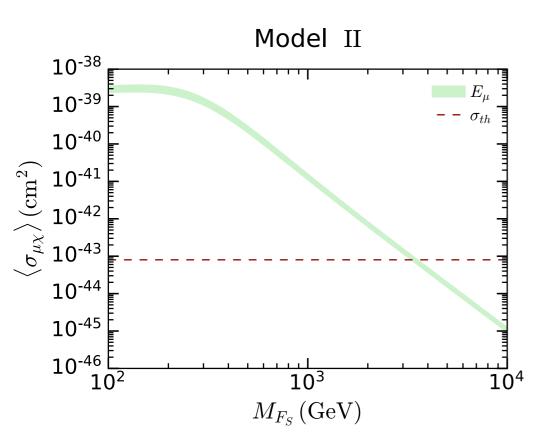
$$M_{F_S} = \simeq 800 \text{ GeV}$$

the observed DM density can be explained with this size of the DM mass

arXiv:2002.12534







The DM search using the NS temperature observation might play an important role in testing these scenarios in the future

Nucleon structure

Effects that are missing

arXiv:2012.08918

Nucleon interactions

SUMMARY

➤ We have studied two representative DM models, Model I and II, where WIMP DM particles have renormalizable couplings to muons The experimental value of the (g - 2)_µ discrepancy can be explained

with a DM mass of $\sim 1~{
m TeV}$

DM particles from these models efficiently accumulate in NSs - DM-muon scattering cross

DM capture in NSs is effective and the DM heating operates maximally

Temperature observation of old NSs *could* provide a promising way of testing the WIMP DM models for the muon $(g - 2)_{\mu}$ discrepancy

However, despite of using an excellent treatment on the capture rate in NS, it is still very simplified and important effects might impact the capture probability.

THANK YOU

BACKUP

Model I

$$\begin{aligned} \mathcal{L}_{\text{mass}} &= -\left(\frac{1}{2}M_{F_S}\chi_S\chi_S + M_{F_D}\xi_D\eta_D + \text{h.c.}\right) - M_{\tilde{L}}^2|\tilde{L}|^2 \ ,\\ \mathcal{L}_{\text{Yukawa}} &= -y_{1H}\chi_S(\xi_D \cdot H) - y_{2H}\chi_S\eta_D H^{\dagger} - y_1\chi_S L_{\mu}\tilde{L}^{\dagger} - y_2\mu_R^c(\xi_D \cdot \tilde{L}) + \text{h.c.} \ ,\\ \mathcal{L}_{\text{quart}} &= -\lambda_L|\tilde{L}|^2|H|^2 - \lambda'_L\tilde{L}^{\dagger}\tau_a\tilde{L}H^{\dagger}\tau_a H + \dots \ ,\end{aligned}$$

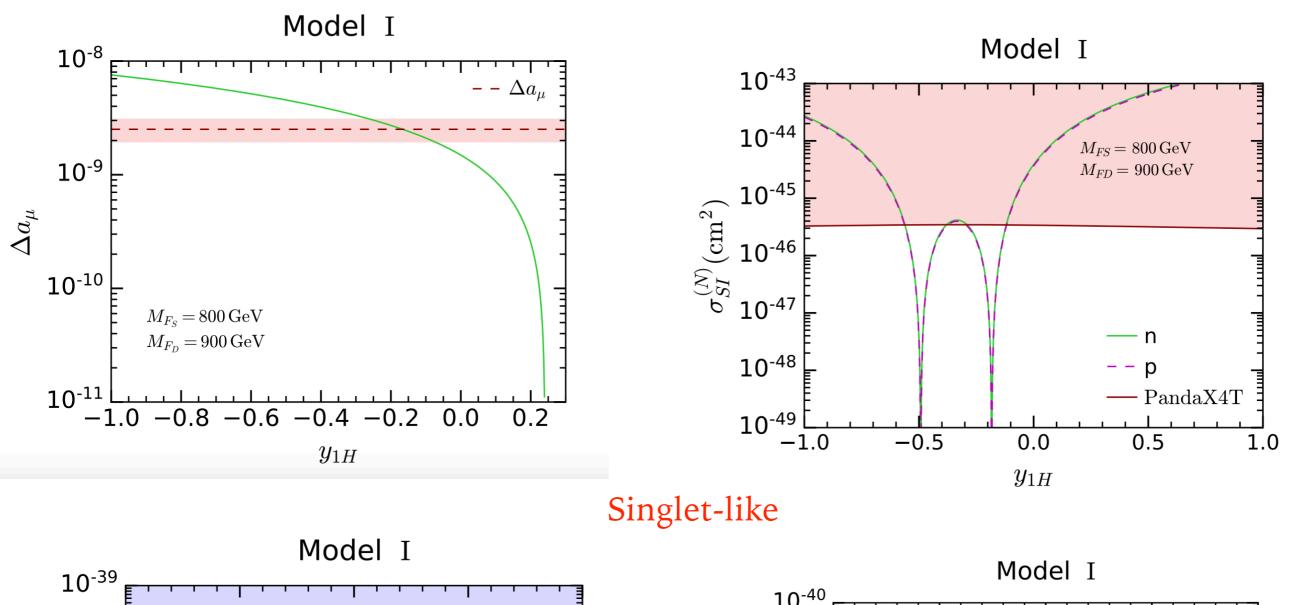
Model II

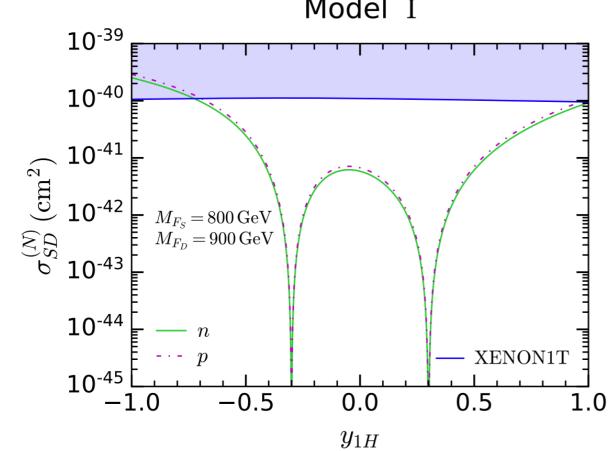
$$\mathcal{L}_{\text{mass}} = -\left(\frac{1}{2}M_{F_S}\chi_S\chi_S + \text{h.c.}\right) - M_{\tilde{L}}^2|\tilde{L}|^2 - M_{\tilde{e}}^2|\tilde{e}|^2 ,$$

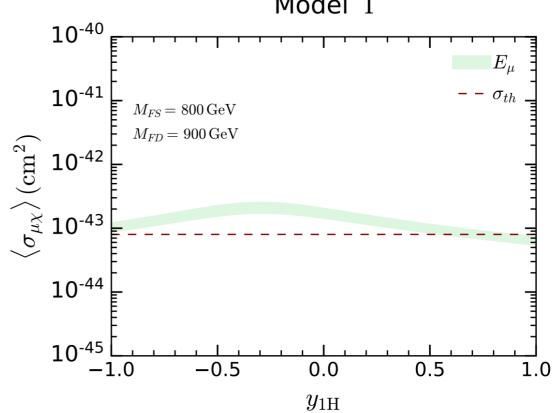
$$\mathcal{L}_{\text{Yukawa}} = -y_1 \chi_S L_{\mu} \tilde{L}^{\dagger} - y_2 \chi_S \mu_R^c \tilde{e}^{\dagger} + \text{h.c.} ,$$

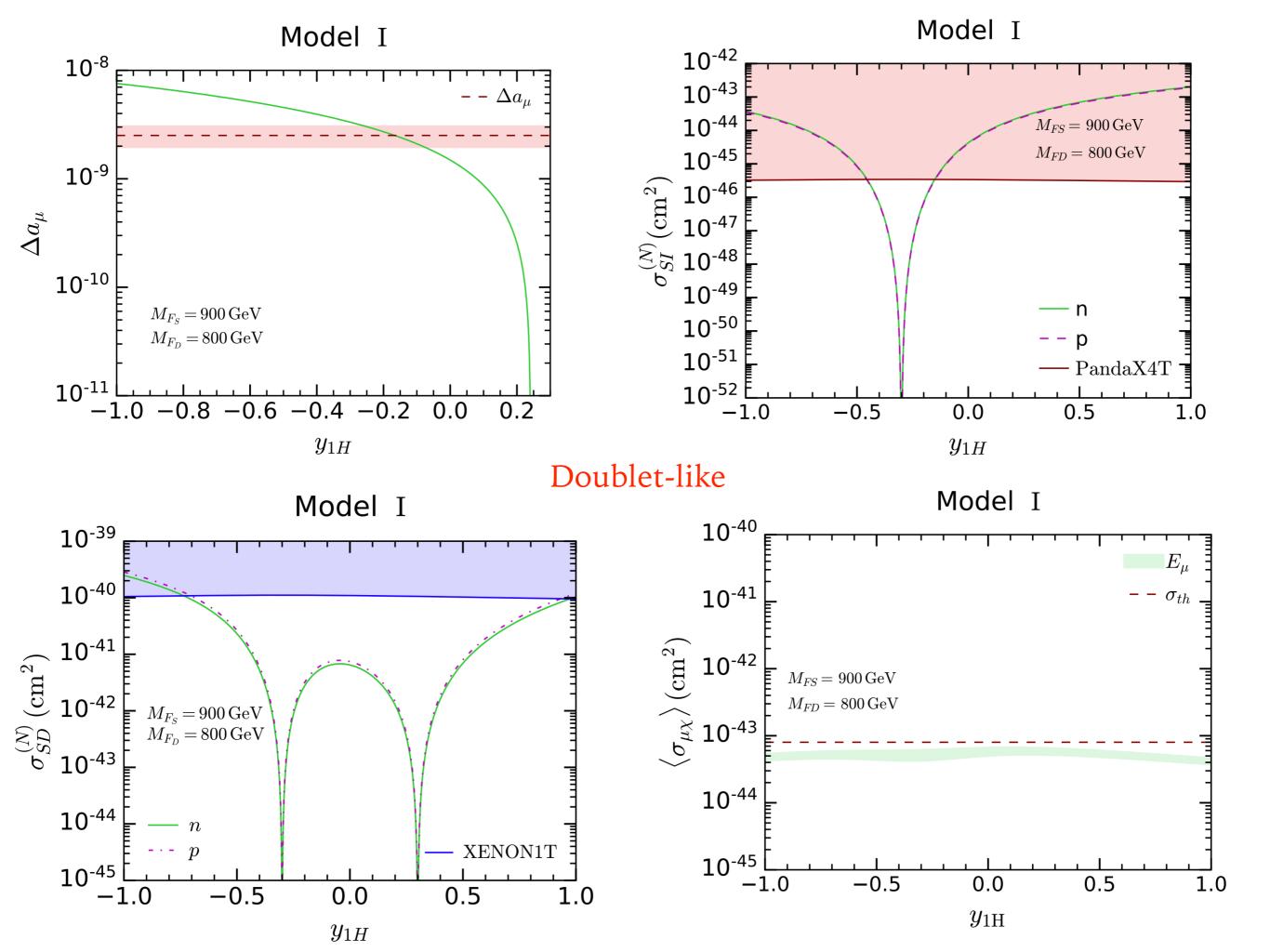
$$\mathcal{L}_{\text{tri}} = -a_H \tilde{e} \tilde{L} H^{\dagger} + \text{h.c.} ,$$

$$\mathcal{L}_{\text{quart}} = -\sum_{f=L,\bar{e}} \lambda_f |\tilde{f}|^2 |H|^2 - \lambda'_L \tilde{L}^{\dagger} \tau_a \tilde{L} H^{\dagger} \tau_a H + \dots .$$









Model I

$$\begin{split} \Delta a_{\mu} &= -\frac{m_{\mu}}{8\pi^2 M_{\tilde{e}}^2} \sum_{i=1,2,3} M_{\chi_i} \operatorname{Re} \left[y_1 y_2 \left(V_{\chi} \right)_{1i} \left(V_{\chi} \right)_{2i} \right] f_{LR}^S \left(\frac{M_{\chi_i}^2}{M_{\tilde{e}}^2} \right) \\ &- \frac{m_{\mu}^2}{8\pi^2 M_{\tilde{e}}^2} \sum_{i=1,2,3} \left[\left| y_1 \left(V_{\chi} \right)_{1i} \right|^2 + \left| y_2 \left(V_{\chi} \right)_{2i} \right|^2 \right] f_{LL}^S \left(\frac{M_{\chi_i}^2}{M_{\tilde{e}}^2} \right) \\ &+ \frac{m_{\mu}^2 |y_2|^2}{8\pi^2 M_{\tilde{\nu}}^2} f_{LL}^F \left(\frac{M_{F_D}^2}{M_{\tilde{\nu}}^2} \right) \,, \end{split}$$

Model II

$$\Delta a_{\mu} = -\frac{m_{\mu}M_{F_S}}{8\pi^2} \sum_{i=1,2} \frac{1}{M_{e_i}^2} \operatorname{Re}\left[y_1 y_2 \left(U_e\right)_{1i}^* \left(U_e\right)_{2i}\right] f_{LR}^S \left(\frac{M_{F_S}^2}{M_{e_i}^2}\right) -\frac{m_{\mu}^2}{8\pi^2} \sum_{i=1,2} \frac{1}{M_{e_i}^2} \left[\left|y_1 \left(U_e\right)_{1i}^*\right|^2 + \left|y_2 \left(U_e\right)_{2i}\right|^2\right] f_{LL}^S \left(\frac{M_{F_S}^2}{M_{e_i}^2}\right)$$

DM-muon ampiitude

$$\frac{d\sigma_{\chi\mu}}{dt} = \frac{1}{16\pi\lambda(s, M_{\rm DM}^2, m_{\mu}^2)} \cdot \frac{1}{4} \sum_{\rm spins} |\mathcal{A}|^2$$
$$\longrightarrow \bar{s} \simeq M_{\rm DM}^2 \gg \bar{s} - M_{\rm DM}^2 \simeq 2E_{\chi}E_{\mu} \gg |t|, E_{\mu}^2$$