Muon g-2 anomaly and new physics in e⁺e⁻ and $\mu^+\mu^-$ final states scattering

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

based on: L. Darmé, $\underline{G^2 dC}$ and E. Nardi, arXiv:2112.09139, accepted by JHEP

Planck 2022 - Paris - 01/06/2022

Giovanni Grilli di Cortona grillidc@lnf.infn.it

- Introduction
- [see talk by Knecht] • The SM estimate
- Indirect new physics effects: modifying the hadronic cross section Luminosity determination
 - The $\sigma(\mu\mu\gamma)$ method 2.
- Solving the a_{μ} tensions: model and constraints
- Conclusions

Introduction

Planck - 01/06/2022

G. Grilli di Cortona

[see talk by Knecht]

684 $116584718.9(1) \cdot 10^{-11}$

Hadronic vacuum polarization

 $153.6(1.0) \cdot 10^{-11}$

Planck - 01/06/2022

G. Grilli di Cortona

[Aoyama et al, 2006.04822, Phys. Rept. 887 (2020) 1-166] [see talk by Knecht]

$$5(40) \cdot 10^{-11}$$

Hadronic vacuum polarization

 $153.6(1.0) \cdot 10^{-11}$

Planck - 01/06/2022

G. Grilli di Cortona

[Aoyama et al, 2006.04822, Phys. Rept. 887 (2020) 1-166] [see talk by Knecht]

$$5(40) \cdot 10^{-11}$$

The SM estimate [Aoyama et al, 2006.04822, Phys. Rept. 887 (2020) 1-166]

Kernel function $\propto s^{-1}$: lower energies more important

G. Grilli di Cortona

Planck - 01/06/2022

[see talk by Knecht]

 $6845(40) \cdot 10^{-11}$

 $e^+e^- \rightarrow \text{hadrons}$ bare cross section: experimental input

The σ_{had} must be measured at all centre of mass energy \sqrt{s} : I. Scan analysis by directly varying \sqrt{s} - CMD-2, SND;

G. Grilli di Cortona

Planck - 01/06/2022

CMD-2 03,06	372.4 ± 3.0
SND 04	371.7 ± 5.0
BaBar 09	376.7 ± 2.7
BESIII 16 superseded by this work	$368.2 \pm 2.5 \pm 3.3$
CLEO 18	376.9 ± 6.3
KLOE 18 avg. of KLOE 08/10/12	366.9 ± 2.1
BESIII (This work)	$368.2 \pm 1.5 \pm 3.3$
390 3	395 400 405
$eV) [10^{-10}]$	

The $\sigma_{\rm had}$ must be measured at all centre of mass energy \sqrt{s} :

- I. Scan analysis by directly varying \sqrt{s} CMD-2, SND;
- 2. Use Initial State Radiation to measure the \sqrt{s} of each collision - KLOE, BaBar, BESIII, CLEO.

G. Grilli di Cortona

Planck - 01/06/2022

CMD-2 03,06	372.4 ± 3.0	1
SND 04	371.7 ± 5.0	
BaBar 09	376.7 ± 2.7	
BESIII 16 superseded by this work	$368.2 \pm 2.5 \pm 3.3$	
CLEO 18	376.9 ± 6.3	L
KLOE 18 avg. of KLOE 08/10/12	366.9 ± 2.1	
BESIII (This work)	$368.2 \pm 1.5 \pm 3.3$	
35 390	395 400 4	405
$eV) [10^{-10}]$		

As a consequence we have the following discrepancies:

- Experiment vs SM data-driven estimate
- SM data-driven vs lattice estimate

• 3σ tension between BaBar and KLOE data used in the SM data-driven estimate

Radiative cross section including ISR photon

$$s \frac{d\sigma(\pi^+\pi^-\gamma)}{ds'} = \sigma_{\pi\pi}^0(s') H(s',s)$$

 $s' = M_{\pi\pi}^2 \rightarrow \text{di-pion invariant mass}$

Planck - 01/06/2022

G. Grilli di Cortona

CMD-2 03,06	372.4 ± 3.0	
SND 04	371.7 ± 5.0	
BaBar 09	376.7 ± 2.7	
BESIII 16 superseded by this work	$368.2 \pm 2.5 \pm 3.3$	
CLEO 18	376.9 ± 6.3	
KLOE 18 avg. of KLOE 08/10/12	366.9 ± 2.1	
BESIII (This work)	$368.2 \pm 1.5 \pm 3.3$	
$35 390 ext{eV} [10^{-10}]$	395 400	405

Radiator function ng for ISR

Three different analysis: KLOE08, KLOE10, KLOE12.

Radiative cross section including ISR photon

$$s \frac{d\sigma(\pi^+\pi^-\gamma)}{ds'} = c$$

 $s' = M_{\pi\pi}^2 \rightarrow \text{di-pion invariant mass}$

(ϕ meson pole). It requires the knowledge of the **luminosity**.

Radiator function accounting for ISR

 $\sigma_{\pi\pi}^0(s') \ H(s',s)$

I. KLOE08: measurements in the range $0.35 < s'/\text{GeV}^2 < 0.85$ at $\sqrt{s} = 1.0194$ GeV

Three different analysis: KLOE08, KLOE10, KLOE12.

Radiative cross section including ISR photon

$$s \frac{d\sigma(\pi^+\pi^-\gamma)}{ds'} = \sigma_{\pi\pi}^0(s') \ H(s',s)$$

 $s' = M_{\pi\pi}^2 \rightarrow \text{di-pion invariant mass}$

(ϕ meson pole). It requires the knowledge of the **luminosity**.

2. KLOEIO: measurements in the range $0.1 < s'/\text{GeV}^2 < 0.85$ at $\sqrt{s} = 1$ GeV $(4.5 \cdot \Gamma_{\phi})$ below the ϕ meson pole). It requires the knowledge of the **luminosity**.

Radiator function accounting for ISR

I. KLOE08: measurements in the range $0.35 < s'/\text{GeV}^2 < 0.85$ at $\sqrt{s} = 1.0194$ GeV

Three different analysis: KLOE08, KLOE10, KLOE12.

Radiative cross section including ISR photon

$$s \frac{d\sigma(\pi' \pi \gamma)}{ds'} = \sigma_{\pi\pi}^0(s') H(s', s)$$

 $s' = M_{\pi\pi}^2 \rightarrow$ di-pion invariant mass

(ϕ meson pole). It requires the knowledge of the luminosity.

2. KLOEIO: measurements in the range $0.1 < s'/\text{GeV}^2 < 0.85$ at $\sqrt{s} = 1$ GeV $(4.5 \cdot \Gamma_{\phi}$ below the ϕ meson pole). It requires the knowledge of the luminosity.

3. **KLOEI2**: relies on the ratio of the number of $\pi^+\pi^-\gamma$ and $\mu^+\mu^-\gamma$ events in the range $0.35 < s'/\text{GeV}^2 < 0.95$. The dependence of the luminosity cancels in the ratio.

Radiator function accounting for ISR

I. KLOE08: measurements in the range $0.35 < s'/\text{GeV}^2 < 0.85$ at $\sqrt{s} = 1.0194$ GeV

Indirect new physics effects Can new physics effects impact the hadronic cross section determination?

It is challenging to affect the hadronic cross-section via extra contributions since the hadronic cross sections are very large!

However, the absolute cross section is required!

Key idea: new physics can enter the channels used to calibrate the luminosity!

Planck - 01/06/2022

G. Grilli di Cortona

[Passera et al. '08, '09, '10, Keshavarzi et al '20, Di Luzio '21, ...]

Indirect new physics effects The Luminosity determination

G. Grilli di Cortona

Planck - 01/06/2022

Indirect new physics effects The Luminosity determination

Planck - 01/06/2022

Indirect new physics effects The Luminosity determination

Planck - 01/06/2022

The $\sigma(\mu\mu\gamma)$ method

 $\sigma_{\pi^+\pi^-}^0 =$ Measured value

Planck - 01/06/2022

QED
$$e^+e^- \rightarrow \mu^+\mu^-$$

cross section

The $\sigma(\mu\mu\gamma)$ method

What if we have $\mu^+\mu^- X$ new physics events mimicking the $\mu^+\mu^-\gamma$?

Planck - 01/06/2022

QED
$$e^+e^- \rightarrow \mu^+\mu^-$$

cross section

$$\sigma_{\mu^+\mu^-}^0 \sim \sigma_{\pi^+\pi^-}^0(1 + \delta_{\mu}(s'))$$

Planck - 01/06/2022

Planck - 01/06/2022

Flavour universal new physics that modifies the Bhabha scattering is expected to modify the $\gamma \mu \mu X$ process, up to differences related to the muon mass and the experiment. We therefore expect $\delta_R \sim \delta_{\mu}$.

Planck - 01/06/2022

We need a model that fakes Bhabha scattering and $\mu\mu\gamma$ final states!

dirac fermion dark matter

 $\chi = (\chi_I, \bar{\chi}_R)$

We need a model that fakes Bhabha scattering and $\mu\mu\gamma$ final states!

dirac fermion dark matter $\chi = (\chi_I, \bar{\chi}_R)$

Spectrum after the U(I) symmetry is broken: $g_{\alpha D} q_S v_S$ $\sqrt{2\lambda_{S}} v_{S} \qquad S \qquad + M_{\chi} \pm \sqrt{2} v_{S} (y_{SR} + y_{SL}) \qquad \chi_{1}^{\chi_{2}} + \chi_{1}^{\chi_{1}} + M_{\chi}^{\chi_{1}} + M_{\chi}^{\chi_{1}}$

In order to generate a significant shift in KLOE's luminosity and to provide additional di-muon events:

- I. the dark photon mass must be very close to the KLOE centre of mass energy $\sqrt{s} \simeq 1.02$ GeV;
- 2. the dark photon must contribute substantially to Bhabha scattering;
- 3. The dark photon must escape bump searches: the main decay channel must be multibody and include some missing energy;

$$m_V \sim 1 \,\text{GeV} \gtrsim m_{\chi_2} \gg m_{\chi_1}$$

Shifting KLOE08

Recast KLOE08 search using Madgraph.

Planck - 01/06/2022

Planck - 01/06/2022

Shifting KLOEI2, BESIII and BaBar

Recast all searches using Madgraph.

Planck - 01/06/2022

Shifting KLOEI2, BESIII and BaBar

Planck - 01/06/2022

Planck - 01/06/2022

Planck - 01/06/2022

G. Grilli di Cortona

Many constraints evaded: I. BaBar dark photon searches; 2. KLOEI0 off resonance measurement; 3. KLOE forward-backward asymmetry; 4. KLOEI2 muon cross section measurement; 5. LEP precision measurements; LHC EW fit with ~3000 fb⁻¹ will be sensitive to this model.

Conclusions

- The 4.2 sigma discrepancy between the SM prediction for the g-2 and the experimental results is accompanied by other anomalies: data-driven vs lattice & **KLOE vs BaBar** in the data-driven estimate.
- The presence of new physics indirectly modifies the experimental results used by the data-driven approach, increasing σ_{had} ;
- **Dark photon models** may shift the σ_{had} measurement of KLOE to be compatible with BaBar, solving the KLOE vs BaBar discrepancy;
- The g-2 anomalies can be solved by an **interplay between direct (~75%)** and indirect (~25%) contributions;
- New measurements by MUonE will add important information in order to explain these anomalies.

Backup

G. Grilli di Cortona

Planck - 01/06/2022

Planck - 01/06/2022

$$^{IVP,LO} = \frac{\alpha}{\pi} \int_0^1 dx \left(1 - x\right) \Delta \alpha_{\text{had}}(t(x))$$

MUonE

G. Grilli di Cortona

Planck - 01/06/2022

[G²dC, Nardi '22]