Chirally enhanced muon g-2 and related observables

with N. McGinnis, K. Hermanek and S. Yoon

arXiv:2011.11812 [hep-ph]

arXiv:2103.05645 [hep-ph]

arXiv:2108.10950 [hep-ph]

arXiv:2205.14243 [hep-ph]

Radovan Dermisek
Indiana University, Bloomington

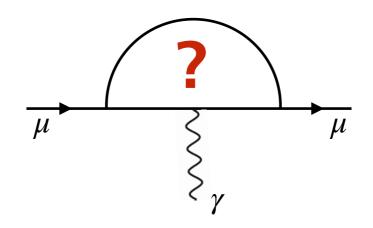
Muon g-2

$$\Delta a_{\mu} \equiv a_{\mu}^{exp} - a_{\mu}^{SM} = (2.51 \pm 0.59) \times 10^{-9}$$

Muon g-2, Fermilab, arXiv:2104.03281 [hep-ex]

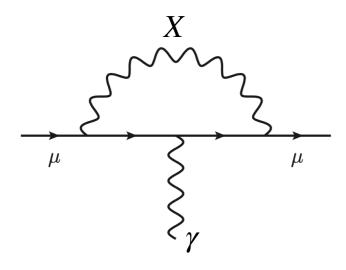
Muon g-2, BNL, arXiv:hep-ex/0602035

SM prediction, T. Aoyama, et al., Phys. Rept. 887, 1-166 (2020)



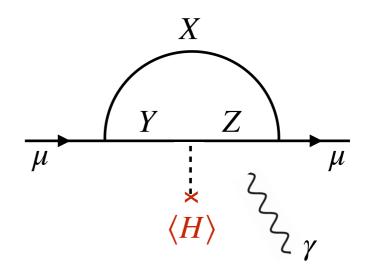
New physics contributions to muon g-2

Typical NP contribution



$$\Delta a_{\mu} \simeq \frac{\lambda_{NP}^2}{16\pi^2} \frac{m_{\mu}^2}{m_{NP}^2}$$

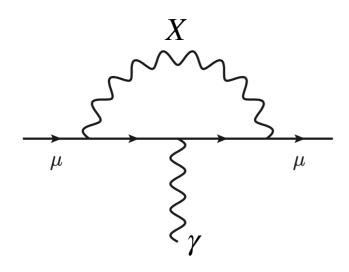
Mass enhanced NP contribution



$$\Delta a_{\mu} \simeq \frac{\lambda_{NP}^3}{16\pi^2} \frac{m_{\mu} v}{m_{NP}^2}$$

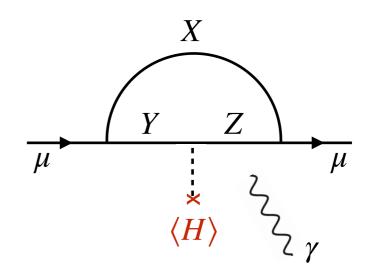
New physics contributions to muon g-2

Typical NP contribution



$$\Delta a_{\mu} \simeq \frac{\lambda_{NP}^2}{16\pi^2} \frac{m_{\mu}^2}{m_{NP}^2}$$

Mass enhanced NP contribution

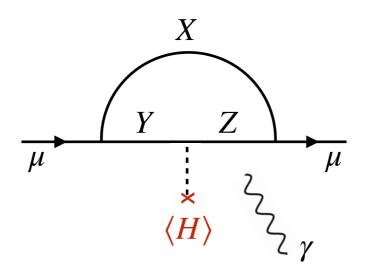


$$\Delta a_{\mu} \simeq \frac{\lambda_{NP}^3}{16\pi^2} \frac{m_{\mu} v}{m_{NP}^2}$$

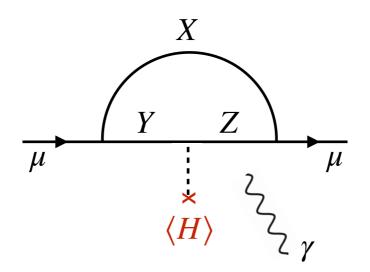
Enhancement:

$$\frac{\lambda_{NP}v}{m_{\mu}}$$

can explain Δa_{μ} with NP at $~\lesssim 10$ TeV (50 TeV) with $\lambda_{NP} \simeq 1$ ($\sqrt{4\pi}$)



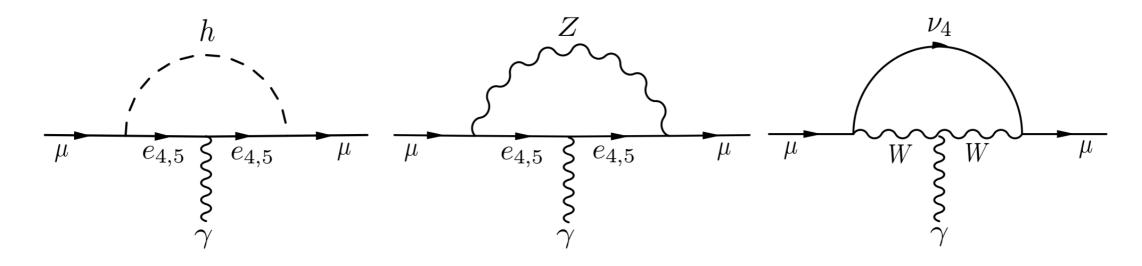
X, Y, Z can have any quantum numbers (allowing for the loop):

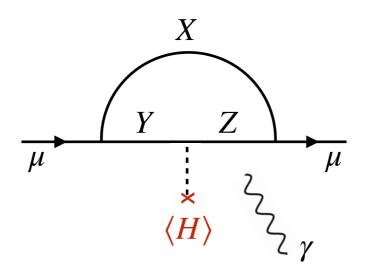


X, Y, Z can have any quantum numbers (allowing for the loop):

• X = h, Z, W and Y, Z = vectorlike leptons

minimal, just SM with new leptons, constrained the most K. Kannike, M. Raidal, D. M. Straub and A. Strumia, arXiv:1111.2551 [hep-ph] R. D. and A. Raval, arXiv:1305.3522 [hep-ph]



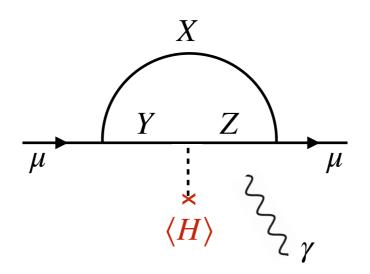


X, Y, Z can have any quantum numbers (allowing for the loop):

• X = h, Z, W and Y, Z = vectorlike leptons

minimal, just SM with new leptons, constrained the most K. Kannike, M. Raidal, D. M. Straub and A. Strumia, arXiv:1111.2551 [hep-ph] R. D. and A. Raval, arXiv:1305.3522 [hep-ph]

• X, Y, Z = 2 fermions and 1 scalar or 2 scalars and 1 fermion scalars not participating in EWSB, the most popular, many options, the least constrained (include models with superpartners)



X, Y, Z can have any quantum numbers (allowing for the loop):

• X = h, Z, W and Y, Z = vectorlike leptons

minimal, just SM with new leptons, constrained the most K. Kannike, M. Raidal, D. M. Straub and A. Strumia, arXiv:1111.2551 [hep-ph] R. D. and A. Raval, arXiv:1305.3522 [hep-ph]

- $X = h, Z, W, H, A, H^{\pm}$ and Y, Z = vectorlike (or SM) leptons e.g. 2HDM with new leptons, interpolates between the other two options R. D. N. McGinnis and K. Hermanek, arXiv:2011.11812 [hep-ph], arXiv:2103.05645 [hep-ph]
- X, Y, Z = 2 fermions and 1 scalar or 2 scalars and 1 fermion scalars not participating in EWSB, the most popular, many options, the least constrained (include models with superpartners)

Type-II 2HDM with L + E (+ N)

General lagrangian describing mixing of the 2nd generation with new leptons:

$$\mathcal{L} \supset \underline{-y_{\mu}\bar{l}_{L}\mu_{R}H_{d} - \lambda_{E}\bar{l}_{L}E_{R}H_{d} - \lambda_{L}\bar{L}_{L}\mu_{R}H_{d} - \lambda\bar{L}_{L}E_{R}H_{d} - \bar{\lambda}H_{d}^{\dagger}\bar{E}_{L}L_{R}}$$

$$-\kappa_{N}\bar{l}_{L}N_{R}H_{u} - \kappa\bar{L}_{L}N_{R}H_{u} - \bar{\kappa}H_{u}^{\dagger}\bar{N}_{L}L_{R}$$

$$-M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} - M_{N}\bar{N}_{L}N_{R} + h.c.,$$

Charged lepton mass matrix (after EWSB):

$$(ar{\mu}_L, ar{L}_L^-, ar{E}_L) egin{pmatrix} y_\mu v_d & 0 & \lambda_E v_d \ \lambda_L v_d & M_L & \lambda v_d \ 0 & ar{\lambda} v_d & M_E \end{pmatrix} egin{pmatrix} \mu_R \ L_R^- \ E_R \end{pmatrix}$$

diagonalizing this matrix leads to: two new mass eigenstates, e_4, e_5 , modification of muon couplings, and couplings between the muon and e_4, e_5

Type-II 2HDM with L + E (+ N)

General lagrangian describing mixing of the 2nd generation with new leptons:

$$\mathcal{L} \supset -y_{\mu}\bar{l}_{L}\mu_{R}H_{d} - \lambda_{E}\bar{l}_{L}E_{R}H_{d} - \lambda_{L}\bar{L}_{L}\mu_{R}H_{d} - \lambda\bar{L}_{L}E_{R}H_{d} - \bar{\lambda}H_{d}^{\dagger}\bar{E}_{L}L_{R}$$
$$-\kappa_{N}\bar{l}_{L}N_{R}H_{u} - \kappa\bar{L}_{L}N_{R}H_{u} - \bar{\kappa}H_{u}^{\dagger}\bar{N}_{L}L_{R}$$
$$-M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} - M_{N}\bar{N}_{L}N_{R} + h.c.,$$

At energies much below M_L, M_E :

$$\mathcal{L} \supset -y_{\mu} \bar{l}_L \mu_R H_d - rac{\lambda_L \bar{\lambda} \lambda_E}{M_L M_E} \bar{l}_L \mu_R H_d H_d^{\dagger} H_d + h.c.,$$

dim. 6 operator is a new source of muon mass and Yukawa coupling:

$$m_{\mu} = y_{\mu}v_d + m_{\mu}^{LE}$$

$$\lambda_{\mu\mu}^h = (m_{\mu} + 2m_{\mu}^{LE})/v$$

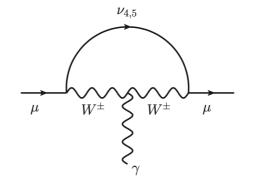
$$m_{\mu}^{LE} \equiv \frac{\lambda_L \bar{\lambda}\lambda_E}{M_L M_E} v_d^3$$

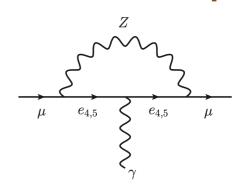
and is directly linked to contributions to Δa_{μ}

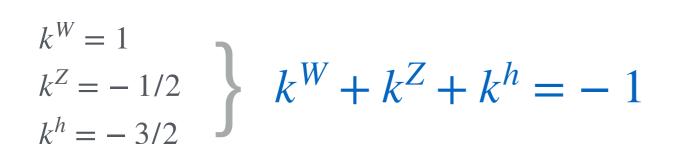
Δa_u in type-II 2HDM with L + E (+ N)

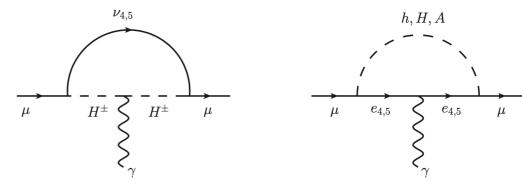
R.D., N. McGinnis, and K. Hermanek, arXiv:2011.11812 [hep-ph] arXiv:2103.05645 [hep-ph]

 $\Delta a_{\mu}^i \simeq rac{k^i}{16\pi^2} rac{m_{\mu} m_{\mu}^{LE}}{m_{\mu}^2}$









$$k^{H} = -(11/12) \tan^{2} \beta$$

$$k^{A} = -(5/12) \tan^{2} \beta$$

$$k^{H^{\pm}} = (1/3) \tan^{2} \beta$$

$$k^{H} + k^{A} + k^{H^{\pm}} = -\tan^{2} \beta$$

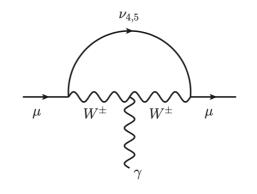
assuming $M_{L,E} \simeq m_{H,A,H^\pm}$

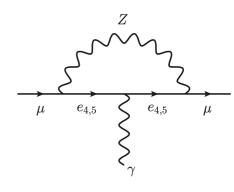
Δa_{μ} in type-II 2HDM with L + E (+ N)

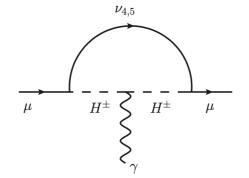
R.D., N. McGinnis, and K. Hermanek, arXiv:2011.11812 [hep-ph]

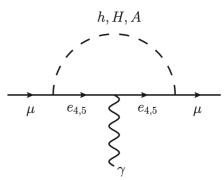
arXiv:2103.05645 [hep-ph]

$$\Delta a_{\mu}^{i} \simeq rac{k^{i}}{16\pi^{2}} rac{m_{\mu}m_{\mu}^{LE}}{v^{2}}$$









$$k^{W} = 1$$

$$k^{Z} = -1/2$$

$$k^{h} = -3/2$$

$$k^{W} + k^{Z} + k^{h} = -1$$

$$k^{H} = -(11/12) \tan^{2} \beta$$
 $k^{A} = -(5/12) \tan^{2} \beta$
 $k^{H^{\pm}} = (1/3) \tan^{2} \beta$
assuming $M_{L,E} \simeq m_{H,A,H^{\pm}}$

$$k^H + k^A + k^{H^{\pm}} = -\tan^2\beta$$

 $k^{A} = -(5/12) \tan^{2} \beta$ $k^{H^{\pm}} = (1/3) \tan^{2} \beta$ $k^{H^{\pm}} = (1/3) \tan^{2} \beta$ $k^{H} + k^{A} + k^{H^{\pm}} = -\tan^{2} \beta$ $k^{H} + k^{H} + k^{H}$ would be able to explain even 100 x Δa_{μ}

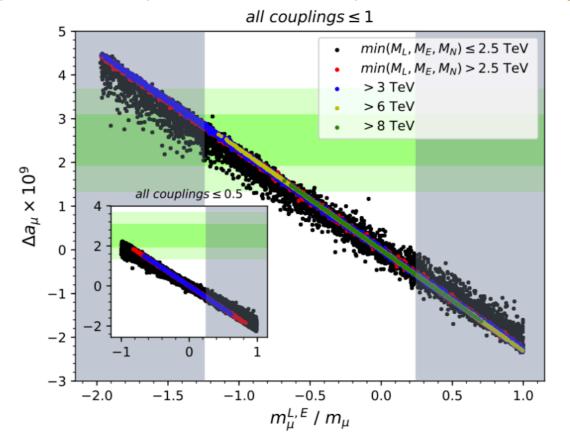
in the next few slides, I will focus on the SM+L+E

Δa_{μ} in SM with L + E and $h \rightarrow \mu^{+}\mu^{-}$

R.D., N. McGinnis, and K. Hermanek, arXiv:2103.05645 [hep-ph]

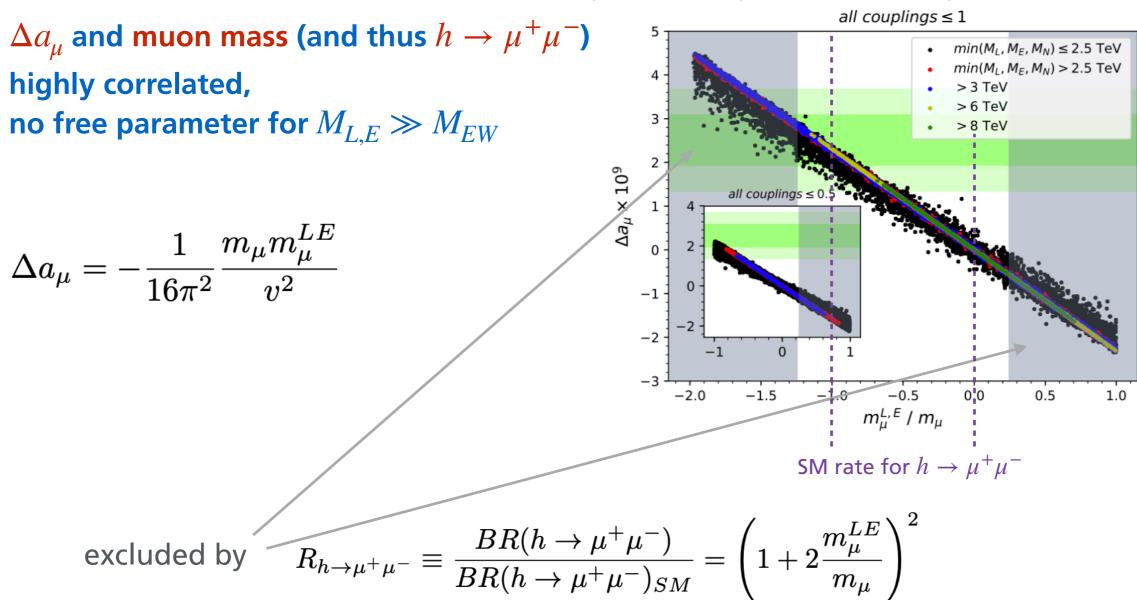
 Δa_{μ} and muon mass (and thus $h \to \mu^+ \mu^-$) highly correlated, no free parameter for $M_{L,E} \gg M_{EW}$

$$\Delta a_\mu = -\frac{1}{16\pi^2} \frac{m_\mu m_\mu^{LE}}{v^2}$$



Δa_{μ} in SM with L + E and $h \rightarrow \mu^{+}\mu^{-}$

R.D., N. McGinnis, and K. Hermanek, arXiv:2103.05645 [hep-ph]

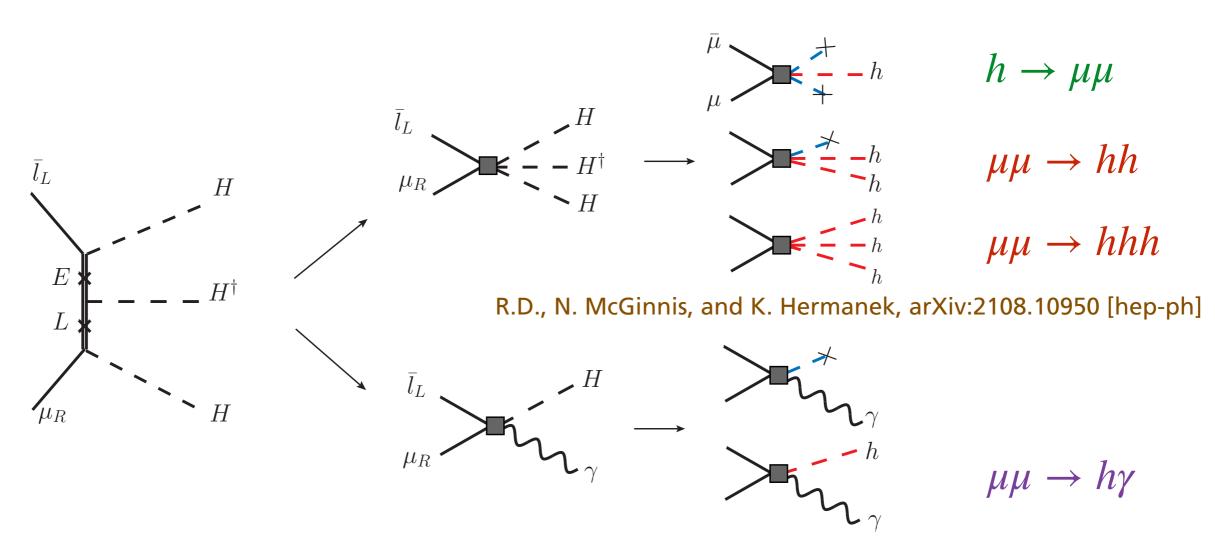


 1σ range of Δa_{μ} predicts $R_{h \to \mu^+ \mu^-} = 1.32^{+1.40}_{-0.90}$

even if SM rate for $h \to \mu^+ \mu^-$ is observed it cannot rule out this explanation of Δa_μ

Related observables

New leptons (~10(s) TeV) might be well beyond the reach of (foreseeable) future colliders, but there are related signals:



requires $\gtrsim 30$ TeV muon collider

D. Buttazzo and P. Paradisi, arXiv:2012.02769 [hep-ph] W. Yin and M. Yamaguchi, arXiv:2012.03928 [hep-ph]

Di-Higgs and tri-Higgs signals in SM+L+E

Effective lagrangian:

agrangian:
$$H=inom{0}{v+rac{1}{\sqrt{2}}h}$$
 $\mathcal{L}\supset -y_{\mu}ar{l}_{L}\mu_{R}H-rac{\lambda_{L}ar{\lambda}\lambda_{E}}{M_{L}M_{E}}ar{l}_{L}\mu_{R}HH^{\dagger}H+h.c.,$

is completely fixed by muon mass and g-2:

$$m_{\mu} = y_{\mu}v + m_{\mu}^{LE}$$
 $\Delta a_{\mu} = -\frac{1}{16\pi^2} \frac{m_{\mu}m_{\mu}^{LE}}{v^2}$

$$m_{\mu}^{LE} \equiv rac{\lambda_L ar{\lambda} \lambda_E}{M_L M_E} v^3$$

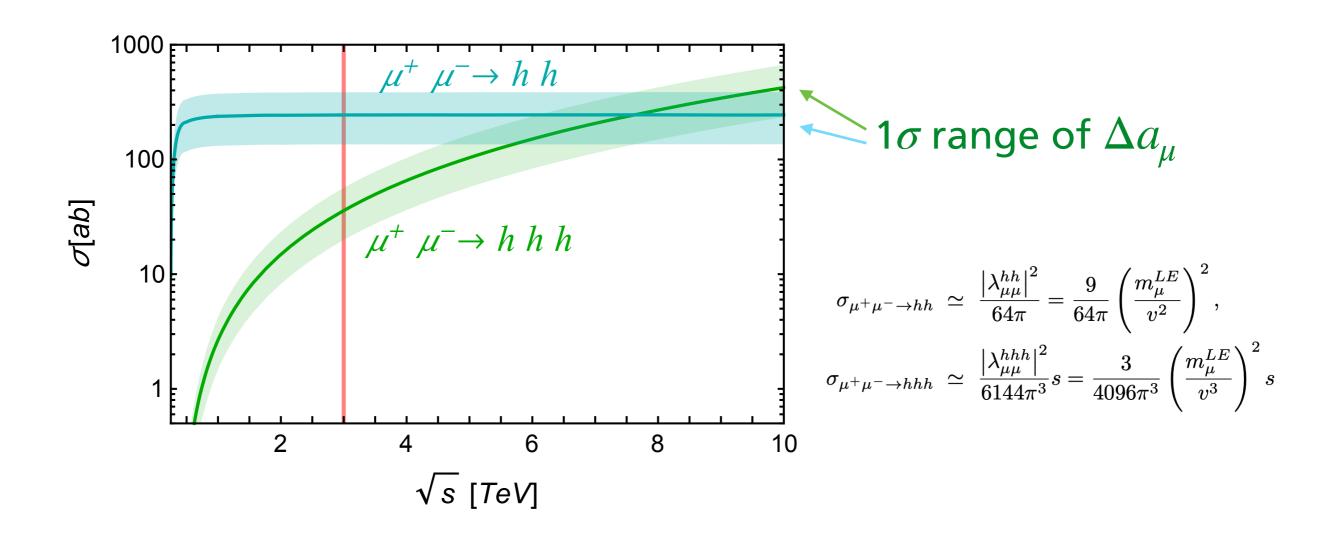
Interactions of the muon with SM Higgs boson:

$$\mathcal{L} \supset -rac{1}{\sqrt{2}} \, \lambda_{\mu\mu}^h \, ar{\mu}\mu h - rac{1}{2} \, \lambda_{\mu\mu}^{hh} \, ar{\mu}\mu h^2 - rac{1}{3!} \, \lambda_{\mu\mu}^{hhh} \, ar{\mu}\mu h^3 \ \lambda_{\mu\mu}^h = (m_\mu + 2m_\mu^{LE})/v \qquad \lambda_{\mu\mu}^{hh} = 3 \, m_\mu^{LE}/v^2, \qquad \lambda_{\mu\mu}^{hhh} = rac{3}{\sqrt{2}} \, m_\mu^{LE}/v^3,$$

are predicted without a free parameter!

Di-Higgs and tri-Higgs signals in SM+L+E

R.D., N. McGinnis, and K. Hermanek, arXiv:2108.10950 [hep-ph]



1 TeV muon collider with 0.2 ab^{-1} could see ~50 di-Higgs events 3 TeV muon collider with 1 ab^{-1} could see ~30 tri-Higgs events

Connection with μEDM

Dipole moments and the mass operator

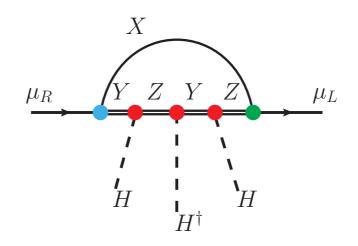
Couplings required for chiral enhancement in Δa_{μ} also generate dim. 6 mass operator:

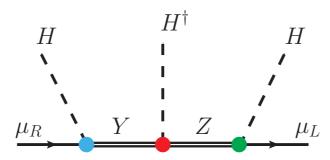
$$\mathcal{L}\supset -y_{\mu}ar{l}_{L}\mu_{R}H -C_{\mu H}ar{l}_{L}\mu_{R}H\left(H^{\dagger}H\right) -C_{\mu\gamma}ar{l}_{L}\sigma^{\mu\nu}\mu_{R}HF_{\mu\nu}+h.c.$$

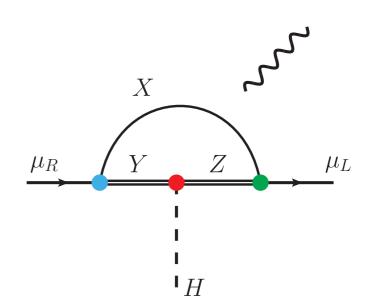
loop models:

A. Thalapillil and S. Thomas, arXiv:1411.7362 [hep-ph]

A.~Crivellin and M.~Hoferichter, arXiv:2104.03202 [hep-ph]







tree models:

SM or 2HDM with VLs

operators related by a real parameter:
$$C_{\mu H} = rac{\kappa}{e} C_{\mu \gamma}$$

The muon ellipse

R. D., N. McGinnis, K. Hermanek and S. Yoon, arXiv:2205.14243 [hep-ph]

After electroweak symmetry breaking:

$$\mathcal{L} \supset -m_{\mu}\bar{\mu}\mu - \frac{1}{\sqrt{2}} \left(\lambda_{\mu\mu}^{h}\bar{\mu}P_{R}\mu h + h.c. \right) + \frac{\Delta a_{\mu}e}{4m_{\mu}}\bar{\mu}\sigma^{\rho\sigma}\mu F_{\rho\sigma} - \frac{i}{2}d_{\mu}\bar{\mu}\sigma^{\rho\sigma}\gamma^{5}\mu F_{\rho\sigma}$$

$$m_{\mu} = (y_{\mu}v + C_{\mu H}v^3) e^{-i\phi_{m_{\mu}}}$$

$$\lambda_{\mu\mu}^{h} = (y_{\mu} + 3C_{\mu H}v^{2}) e^{-i\phi_{m_{\mu}}}$$

$$R_{h\to\mu\mu} \equiv \frac{BR(h\to\mu\mu)}{BR(h\to\mu\mu)_{SM}} = \left(\frac{v}{m_{\mu}}\right)^2 \left|\lambda_{\mu\mu}^h\right|^2$$

$$\Delta a_{\mu} = -\frac{4m_{\mu}v}{e} \operatorname{Re}[C_{\mu\gamma}e^{-i\phi_{m_{\mu}}}]$$

$$d_{\mu} = 2v \operatorname{Im}[C_{\mu\gamma}e^{-i\phi_{m_{\mu}}}]$$

Because the operators are related, we have:

$$C_{\mu H} = \frac{k}{e} C_{\mu \gamma}$$

$$R_{h\to\mu\mu} = \left(\frac{\Delta a_{\mu}}{2\omega} - 1\right)^2 + \left(\frac{m_{\mu}d_{\mu}}{e\omega}\right)^2$$

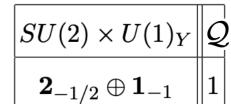
$$\omega = m_{\mu}^2/\underline{k}v^2$$

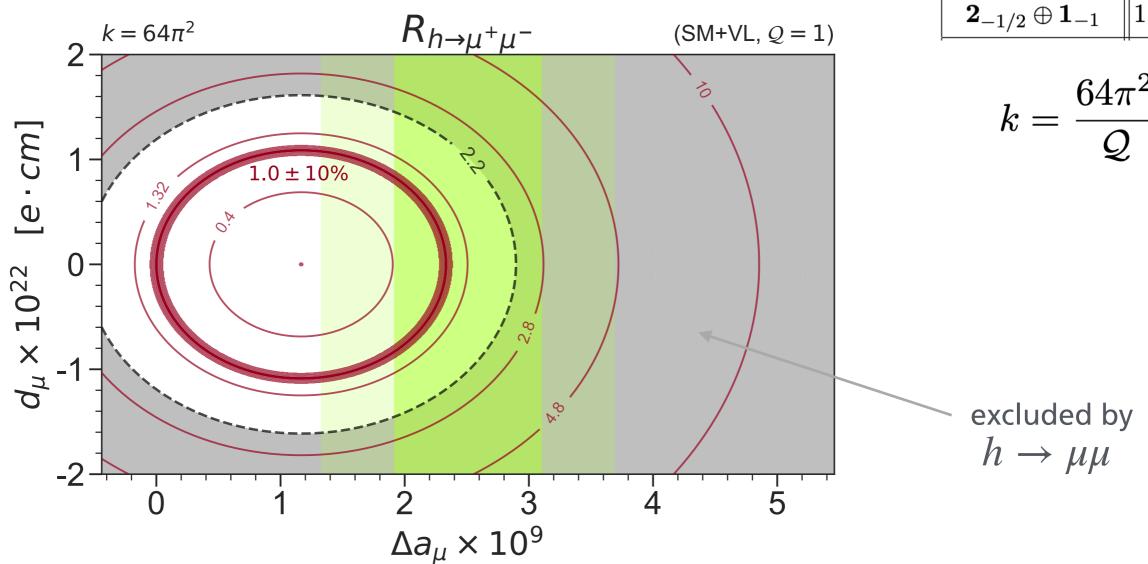
 Δa_{μ} , d_{μ} and $h o \mu \mu$ are highly correlated

Standard model with L + E

VLs with the same quantum numbers as SM leptons:

Relation completely fixed by quantum numbers



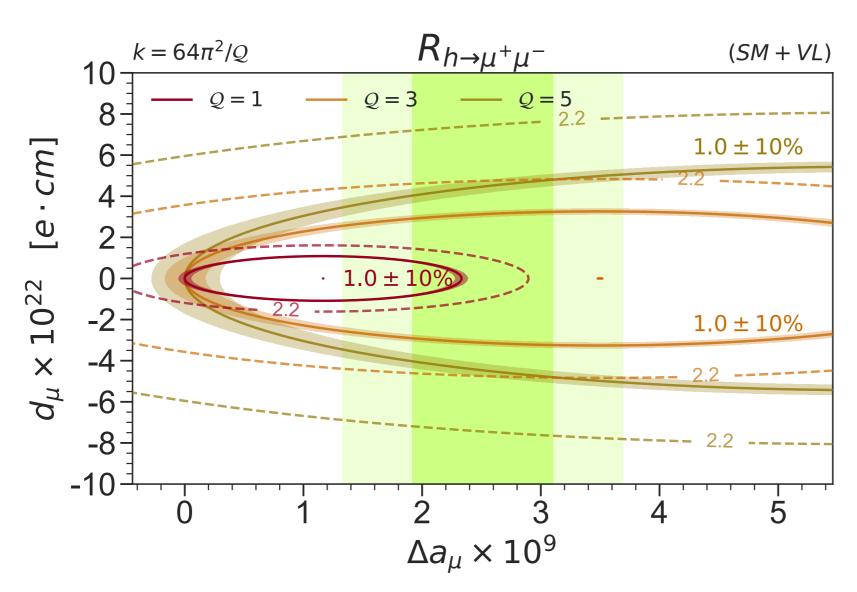


$$|d_{\mu}| \lesssim 10^{-22} \,\mathrm{e} \cdot \mathrm{cm}$$
 predicted

Standard model + VLs

Five possible quantum number assignments for VLs:

(with mass enhanced contributions)



$$k = \frac{64\pi^2}{\mathcal{Q}}$$

$SU(2) \times U(1)_Y$	\mathcal{Q}
$2_{-1/2}\oplus1_{-1}$	1
$2_{-1/2}\oplus 3_{-1}$	5
$2_{-3/2}\oplus1_{-1}$	3
$2_{-3/2}\oplus3_{-1}$	3
$2_{-1/2}\oplus\ 3_0$	$oxed{1}$

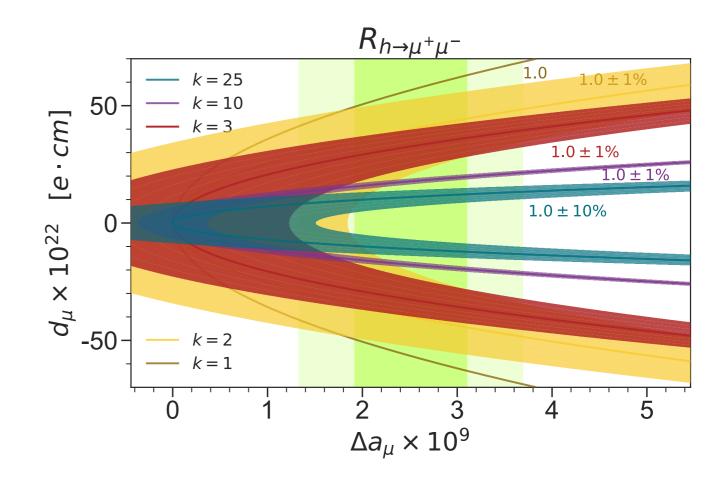
sharp predictions for d_{μ} once $h \to \mu \mu$ is precisely measured

Other models

Models with more scalars participating in EWSB

e.g. 2HDM, type-II:

$$k = \frac{64\pi^2}{\mathcal{Q}(1 + \tan^2 \beta)}$$



Other models

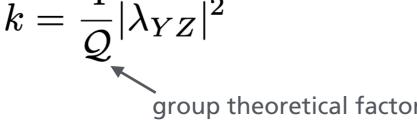
Models with more scalars participating in EWSB

e.g. 2HDM, type-II:

$$k = \frac{64\pi^2}{\mathcal{Q}(1 + \tan^2 \beta)}$$

Loop models:

$$k = \frac{4}{\mathcal{Q}} |\lambda_{YZ}|^2$$
 group theoretical factor

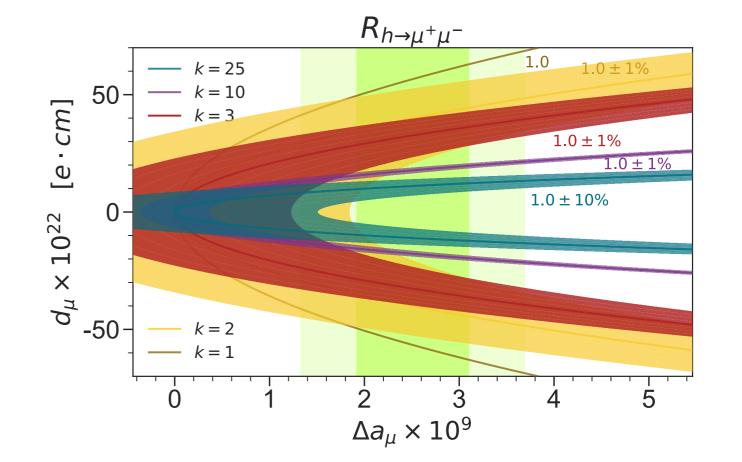


e.g.

top quark+leptoquark: $k \simeq 3$

MSSM, bino+smuon (with large mixing): $k \simeq 10-50$

In general, larger k means larger coupling and masses of new particles



Impact of future $h \to \mu\mu$ and $\mu {\rm EDM}$

All models with chiral enhancement can be parameterized by k:

current limits:

$$|d_u| \le 1.8 \times 10^{-19} \,\mathrm{e} \cdot \mathrm{cm}$$

Muon g-2 (BNL) arXiv:0811.1207 [hep-ex]

indirect limits:

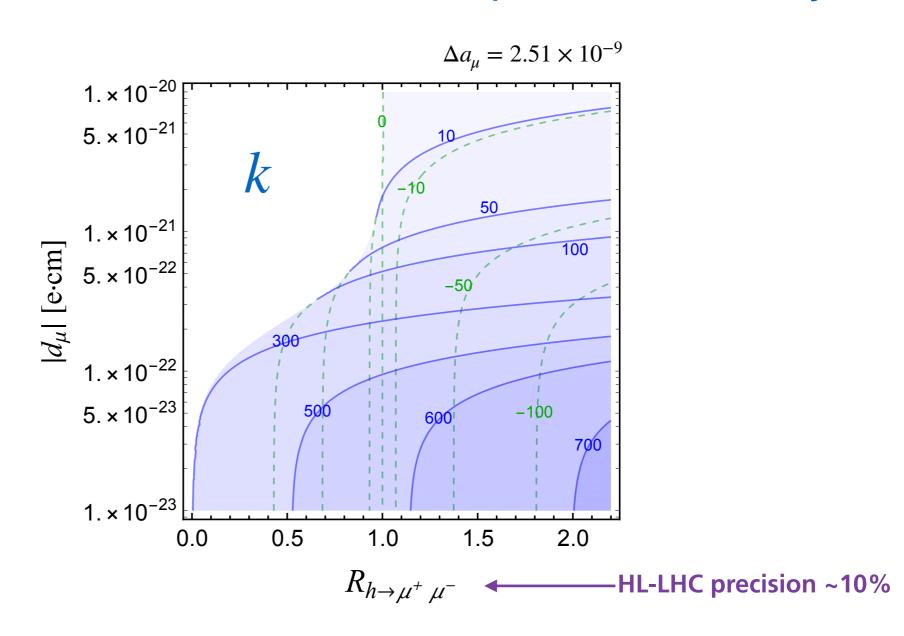
$$|d_u| \le 2 \times 10^{-20} \,\mathrm{e} \cdot \mathrm{cm}$$

Y. Ema, T. Gao and M. Pospelov, arXiv:2108.05398 [hep-ph]

future sensitivity:

$$|d_{\mu}| \le 6 \times 10^{-23} \,\mathrm{e \cdot cm}$$

at Paul Scherrer Institute,
arXiv:2102.08838 [hep-ex]



many models (ranges of parameters) will be tested in near future

Summary

There are many possible explanations of Δa_{μ} .

Models with chiral enhancement are difficult to test directly since the anomaly can be explained with multi TeV (10s TeV) particles.

Indirect tests include measurements of:

- muon couplings to Z and W (not directly tight to Δa_{μ}) relevant especially for models with tree-level mixing, can be tested at Giga-Z or FCC-ee
- muon Yukawa coupling, $h \to \mu\mu$ a deviation could be seen at the LHC, but SM-like observation would not rule out even tree models
- $\mu\mu \to hh$ and $\mu\mu \to hhh$ fixed by Δa_μ in tree models, large rates even at low energy colliders
- $\hbox{$\mu$EDM and correlation of $\Delta a_{\mu'}$, d_{μ} and $h\to \mu\mu$ } \\ \hbox{many models (ranges of parameters) will be tested in near future}$