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Characterize the parameter space of CP-violating observables at order

1/A% in the EFT expansion
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CPV in the SMEFT: no way out of collectivity

Counting CP-odd flavor-invariants at order 1/A”

Collectivity and suppression in the SMEFT
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CP-Violation in the Standard Model

In the Electroweak sector, CP violation is encoded in the CKM matrix

Loix = : -ﬁLVW+dL + CZLVTW_’LLL-

€ - y 1 —7 - 1 —~ )
Under CP: Lomix — . W,ILU(VT)TW“( 5) d+ W, dVTv“( 5) U

so a complex CKM matrix breaks CP

Taken from: Matthew D. Schwartz, “Quantum Field Theory and the Standard Model” 4
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CP-Violation in the Standard Model

CP-Violation must thus have a flavor-independent meaning. In the SM, this is provided by the Jarlskog

Ilnvariant

/ mass degeneracies!
3 <

Jy=ImTr |V, VI YY) | =6(y2 —v2) (w7 — v2) (w2 — v2) (i — v (i —v2) (W2 — y2) T

2 .
where j — 512€12513C13523C23 SlIl(éCKM)

In the standard parametrization

Y
C12C13 C13512 S1z€ oM

_ i i

VokMm = | —C23812 — €12813823€"°“ Y C19Ca3 — S12813823€" M C13593
i i
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The Standard Model is generally intended as the renormalizable part of a larger description, that

includes the effects from heavy resonances that cannot be produced on-shell (assuming no new light
degrees of freedom).

Deviations from the dimension-4 SM are parametrized via higher dimensional, gauge invariant
operators, built with SM field

Lsverr = Loy + Z A O(”)

n>>5

We will focus on operators of dimension 6 in the Warsaw basis
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CP violation in the SMEFT

Which phases are physical for 3 flavors? When does the SMEFT break CP?

A=AY 4+ A® 4 + 2Re (A<4>A<6>* )

\
Conserves CPiff J, =0 \Y

Conserves CPiff J, =0 & 77?=0
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CP-odd invariants

Given a SMEFT dimension-6 operator containing fermions, we can build a set of CP-odd flavor invariants by
giving it spurionic transformation properties.

<—> _
For example, turning on only OE)Q = C’Eé S (H]Li D MH) Qm " Qn

i LyCW = ImTe(Y, Y YoV O
Hermitian 3x3 matrix — 3 phases —_— LfQ(l) = ImTr((Y,Y,)? (YdYJ)QO(D )
LYW = Te(Y, Y, Yoy, (v Y)2(Yay])2Ch))

CP IS conserved |ffJ - LHQ”) LHQ(”

L1 — ¢




How many conditions?

CP-odd invariants

Type of op. # of ops | # real # im. | # CP-odd invariants
% Yukawa, 3 27 27 21
ié Dipoles 8 72 72 60
2 current-current 8 o1 30 21
all bilinears 19 150 129 102
LLLL 5 171 126 54
= RRRR 7 255 195 126
3 LLRR 8 360 288 174
= LRRL 1 81 8l 27
LRLR 4 324 324 216
all 4-Fermi 25 1191 1014 597
all 1341 1143 699
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CP-odd invariants

How many conditions?

Type of op. # of ops | # real # im. | # CP-odd invariants
% Yukawa, 3 27 27 21
E Dipoles 8 72 72 60
2 Ccurrent-current 8 o1 30 21
all bilinears 19 150 129 102
LLLL 5 171 126 54
s RRRR 7 255 195 126
3 LLRR 8 360 288 174
= LRRL 1 81 8l 27
LRLR 4 324 324 216
all 4-Fermi 25 1191 1014 597

all 1341 @ @

The number of independent linear CP-odd invariants is smaller than the number of new phases!



Working at ©(1/A%) reduces the number of CP-violating parameters. Let us start from the up-basis

Yu — dlag(yua Ye, yt) Yd — VCKMdiag(yda Ys, yb) Ye — diag(yev Y yT)

In the lepton sector, this choice breaks the U(3); X U(3), of the free Lagrangian down to the U(1)? described by the
transformation

(L,e) — diag(e®t, €2, e"3) (L, e)

At dimension 6, operators containing leptons are charged under this symmetry, e.g.

Cl 6’&(52 51) Cl 62(53—51)

C C C C11
11 Ci12 C13 (1)
_ \ —1(02—0 (03 —0
* >k —9 — —09 —_
613 623 633 Calfse Z(53 51) 6536 2(53 52) 633

Off-diagonal coefficients are charged under such U(1)°, so at 6(1/A?%) no invariant containing them can be built
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CPV in the SM: a collective effect

In the Standard Model, the smallness of the phenomenological parameters from all three generations
conspire to produce a non-zero but small J,

: .3
Jis =ImTr _YuYJ, YdYJ_ =6(y; —y2)(vi —va) (e —va) (s — o) (i —va) (s —yq)T

Using the Wolfenstein parametrization

Y, = diag(a, A%, a.A\*, a:\°)

Yy = Vermdiag(ag\’, acA®, ap\®) > J4 ~ )\36
1 AN (p — im) )

A
Ve = —A 1 AN?
AN (1 — p—in) —AN? 1

with 1~ 0.2, a = 0(1)

" How suppressed are thejSMEﬁFLTﬁinar
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CPV in the SMEFT: a collective effect

For the invariants of Cgé at first non-zero order

0

More generically, we can ask: how many independent invariants are there at a given
order in the A expansion?

Ly Aaga%ImC’géj A8 [ .
Ly | = 0 +O(\) 'Less flavor suppression than J,!|
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CPV in the SMEFT: a collective effect

For the invariants of CI% at first non-zero order

L AaZa?lmCy),

Lo | = 0
L3 0

More generically, we can ask: how many independent invariants are there at a given
order in the A expansion?

CuH
g — Generic Entries )
—— Froggatt—Nielse

: : 6l — S |
This depends on the assumption we make on o | ) _

the flavor structure of the dimension-six c [ — MRV
operator coefficient. e 4t ]
2| Ja ]
0 -'I PR T R T N TR TN SN TR NN SN SUN SN S NN TN S (N SR [N SN S SN SN S S S SN S R S T

0 10 20 30 40 50 60

A order
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- CPV in the SMEFT inherits the collective nature of CPV in the SM

- Additional CP breaking contained in the coefficients of fermionic higher dimensional operators can
be consistently captured by CP-odd linear flavor-invariants

- Not all new phases contained in the operator coefficients break CP at order ©(1/A?). Using
invariants straightforwardly provides the correct counting

- The invariants can be used to check the suppression of CPV coming from SMEFT operators



Thank you



