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Introduction

Gauge-Higgs unification through compactified Yang-Mills models :

Usual approach uses tori as compact space

First modes are massless, the rest forms the Kaluza-Klein tower

The effective theory gives massless scalars

Masses for the scalars are generated at loop level

In practice, masses are too small to reproduce the Higgs...

⇒ Can we do better ?
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Nilmanifold

The recipe for a compact nilmanifold:

Pick a nilpotent Lie algebra g, i.e. such that

[g, [ g, . . . , [ g, [g, g]] . . . ] = 0 . (1)

ex : [V1, V2] = −fV3 , [V1, V3] = [V2, V3] = 0 .

Consider the element of the algebra as tangent vectors of a manifold
and find a coordinate system.

Make identifications so that the manifold is compact (meaning,
quotient by a lattice).
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Heisenberg manifold

The simplest example, The Heisenberg algebra :

[V1, V2] = −fV3 , [V1, V3] = [V2, V3] = 0 . (2)

Now define the coframe associated to those vectors

de3 = fe1 ∧ e2 ; de1 = 0 ; de2 = 0 . (3)

Pick a coordinate system

e1 = r1dx1 ; e2 = r2dx2 ; e3 = r3
(
dx3 +Nx1dx2

)
, (4)

where N =
r1r2

r3
f ∈ N . (5)
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Identifications

To make the manifold compact, we use

x1 ∼ x1 + n1 ; x2 ∼ x2 + n2 ; x3 ∼ x3 + n3 − n1Nx2 , (6)

n1, n2, n3 ∈ {0, 1} .

Heisenberg manifold ⇔ 2-torus with twisted circle fiber

⇒ What about functions on this space ?
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The Laplacian

Solve ∆f = λf

⇒ Eigenfunctions form a complete set on the space, any function can be
expanded on this basis (similarly to the Fourier basis) :

f(x) =
∑
i

ciUi(x) (7)

Similarly, we solve for one-forms :

∆Bm = λBm (8)

⇒ Eigenscalars and eigen-1-forms have analytical expressions.
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Results

”Low-lying” forms :
Scalars :

UI=1 =
1√
V

; λU1 = 0 , (9)

One-forms :

BI=1 =
1√
V
e1 ; λB1 = 0 (10)

BI=2 =
1√
V
e2 ; λB2 = 0

BI=3 =
1√
V
e3 ; λB3 = f2
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Kaluza-Klein tower

Masses for the other modes :

(mtower)
2 ∼ 1

(ri)2
. (11)

If we take the geometrical limit (known as the ”large base, small fiber”
limit)

|f| � 1

ri
, i = 1, 2, 3 ⇒ r3 � r1,2 , (12)

we effectively separate the low-lying masses from the rest of the tower.
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From 7D to 4D

The effective action is computed from the 7D action :

L4D =

∫
dy3L7D ; L7D =

1

2
Tr
(
FMNF

MN
)

(13)

Now we use the following decomposition

Aa = Aaµ(xM )dxµ +Aam(xM )dym (14)

where

Aaµ(xM ) =Aaµ(xµ)U1(y) (15)

Aam(xM ) =

3∑
i=1

φai(xµ)Bim(y) , (16)

Inject Aa into the action and simplify
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From 7D to 4D

The resulting action :

S =

∫
dx4Tr

(
− 1

2FµνF
µν +

3∑
i=1

Dµφ
iDµφi −M2(φ3)2 − U

)
(17)

where :

U = Tr
(
− 2igM [φ1, φ2]φ3 + 1

2g
2

3∑
i,j=1

[φi, φj ][φi, φj ]
)

(18)

with M = |f| and g =
g7D√
V

.

⇒ 3 scalars in the adjoint representation
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The potential

We would like to find a minimum of

V
M2

= (φ3)2 − 2i
g

M
Tr
(

[φ1, φ2]φ3
)

+ 1
2

g2

M2

3∑
i,j=1

Tr
(

[φi, φj ][φi, φj ]
)
.

(19)

Compute the variation of the potential,

δV
M2

= Tr
(
2φ3δφ3

)
− 2i

g

M
Tr
(

[φ1, φ2]δφ3 + [φ3, φ1]δφ2 + [φ2, φ3]δφ1
)

+2
g2

M2
Tr
( 3∑
I,J=1

[φI , φJ ][φI , δφJ ]
)

= 0 . (20)

Solution : φ3 = 0 ; [φ1, φ2] = 0
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The mass matrix

Next we compute de second order variation

δ2V
2M2

=Tr(δφ3)2 − 2i
g

M
Tr
([
δφ1, φ20

]
δφ3 +

[
φ10, δφ

2
]
δφ3
)

(21)

+
g2

M2
Tr
( [
δφ1, φ20

]2
+
[
δφ2, φ10

]2
+
[
δφ3, φ10

]2
+
[
δφ3, φ20

]2
+ 2

[
δφ1, φ20

] [
φ10, δφ

2
] )

⇒ Naive approach : fix the gauge and compute the masses.

⇒ General approach : write the Lie algebra in the Cartan basis.
(Note: All commutators are with the vacuum)
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The Cartan basis

Take the Lie algebra g in the basis

[Hi, Hj ] = 0 , [Hi, Eα] = αiEα , [Eα, Eβ] = NαβEα+β (22)

Hi form the Cartan subalgebra, Eα are the roots.

Vacuum condition : φ3 = 0 ; [φ1, φ2] = 0

⇒ Pick φ1, φ2 ∈ Cartan.

The mass matrix is block diagonal in root space.
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⇒ δ2V
M2

=


Aα

A∗α
. . .

Ji
. . .

 , (23)

Aα =

−(bα2 )2 bα1 b
α
2 bα2

bα1 b
α
2 −(bα1 )2 −bα1

−bα2 bα1 1− (bα1 )2 − (bα2 )2

 , Ji =

0
0

1

 (24)
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Mass of a root

Once the mass matrix is diagonalized, the masses for a given root Eα are :

0 , (m±α )2 =
1

2
M2

(
1 + 2

(
(bα1 )2 + (bα2 )2)

)
±
√

1 + 4
(
(bα1 )2 + (bα2 )2)

))
,

(25)

where bαI ≡
g
Mαiφ

Ii
0

⇒ scalar product of the vacuum φI with the root α.
For the gauge bosons, we have

m2
α,gauge = g2

2∑
I=1

φIi0 αi (26)

= M2
(
(bα1 )2 + (bα2 )2

)
The Hi directions are not affected by the vacuum.
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An example : SU(3)

Figure: Root diagram of su(3)

For a root Eα :

[Hi, Eα] = αiEα (27)

We can think of the αi as coordinates in a
vector space. Here we have H1 and H2,
corresponding to a 2-dimensional space :

Eα ⇒
(
α1

α2

)
(28)

⇒ Here, SU(3)→ U(1)× U(1)
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SU(3)→ SU(2)× U(1)

Figure: Root diagram of su(3)

The root α is orthogonal to the vacuum.
Therefore

m2
α,gauge = 0 and m2

−α,gauge = 0 (29)

⇒ Residual gauge = SU(2)× U(1)

The roots β and γ have same mass. They
form a fundamental representation of
the new gauge.
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SU(3)→ SU(2)× U(1) one-loop renormalized masses

Figure: One-loop renormalized masses of the low-mass scalars for a the breaking pattern
SU(3)→ SU(2)× U(1). H1 and Xµ are in the fundamental representation of

SU(2)× U(1), while φ
SU(2)
i is the adjoint of SU(2) and φ

U(1)
i in the adjoint of U(1).

φ
U(1)
i does not couple to the gauge. The graph was realized for φ01 = φ02.
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Conclusion

Twist (f) ⇔ Mass at tree level (M)

Potential allows for various symmetry breaking

Model is rigid (Yang-Mills in 7D + nilmanifold)

Analytical results all the way for any gauge group G (but G may be
constrained by physical motivations)

Moduli of the metric on the Heisenberg manifold computed (here we
used the flat metric)

Laplacian spectrum for scalars with arbitrary metric solved

Dirac operator with arbitrary metric solved (so fermions can be
considered both in 7D and 4D)
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Possible directions :

Laplacian for one-forms with arbitrary metric not solved (yet), but
solved for the first modes.

More realistic models with fermions

What about gravity in this context ?

Thank you !
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