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Motivations

Establish a rigorous quantization of QG from the operator perspective

QG is renormalizable [Stelle], but there are serious problems

Rewrite QG in the familiar language of non-Abelian gauge theory

Covariant operator formalism makes studying off-shell quantities (e.g. correlation
functions) much more transparent

Fourth order theories resist this description due to their “hidden” dofs
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* |t may be possible to overcome the classical Ostrogradky instability with guantum
physics [Donoghue, Menezes]
* This formalism gives a new perspective - we need as many tools as we can get!
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e Ghost problem: fourth order theories have problems with unitarity
* |t may be possible to overcome the classical Ostrogradky instability with guantum
physics [Donoghue, Menezes]
* This formalism gives a new perspective - we need as many tools as we can get!

 Make available well-known techniques for studying quantum corrections
(renormalization, anomalies, etc.)
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LSZ operator formalism

Interacting fields behave as free fields in the asymptotic limit

o (), 2¥ = —o0
O(r) — ()
Pout(x), 2 — +oo

Asymptotic fields decompose as a sum of (oscillators)*(plane wave functions)

0*(2) = > (VF(P)fp(x) + O (P)p(x) + O (P)hp(w) + -+ + (b))

O fp(r) = Dgp(x) = Ohp(z) = --- =0

Inverting the decomposition defines oscillators in terms of their interacting field

z0—+o00

3% (p) = lim [z / d%(f;(:c)(?o t g (2) o0 + h(2) Dy —|—---)<I>(:U)]

Needed for the LSZ reduction formula for the S-matrix — optical theorem and unitarity



BRST quantization and physical states (Nakanishi, Ojima 1990]

BRST theory introduces new fields to account for the redundant dofs in gauge theories
Nakanishi-Lautrup (NL) bosons: B,(x) (Lagrange multipliers to enforce gauge conditions)

(cancel unphysical contributions to loops,

Faddeev-Popov ghosts and anti-ghosts: C%(x), C,(x) establish BRST symmetry)
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BRST quantization and physical states (Nakanishi, Ojima 1990]

BRST theory introduces new fields to account for the redundant dofs in gauge theories

Nakanishi-Lautrup (NL) bosons: Ba(:l,’) (Lagrange multipliers to enforce gauge conditions)

. = cancel unphysical contributions to loops,
Faddeev-Popov ghosts and anti-ghosts: C*%(x), C,(x) istablish BZS\Q symmetry) g

Cancellation is made precise by global BRST symmetry, generated by the charge operator Q

5.t = ¢ (5 aqu) 5.B" =0 _
; ¢ ge=Ce ST — Scl — Q(Oaxa) — Scl + ng + SFP
560“ — () (free theory) 5.C% = ¢iBY / / f x
‘ classical action gauge conditions gauge fixing & ghost actions

Kugo-Ojima “quartet mechanism” classifies all states into physical singlets or unphysical quartets

__— Vir 2 { |CLZ ; Q |CLZ-> — 0} BRST singlet states with no parents (transverse parts of ¢*)
)/ (full Fock space) \

\ Vq 2 (|7TO> | l>) | 1> Q‘WO> ?é > matching pairs of parent-daughter doublets
L (Iﬂ-—1>v |50>)7 |50> = Q ‘7T_1> 7é 0 )




Quadratic (conformal) gravity at second order

General (scale-invariant) Riemann? action simplified by dropping Gauss-Bonnet invariant (T.D.)
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Quadratic (conformal) gravity at second order

General (scale-invariant) Riemann? action simplified by dropping Gauss-Bonnet invariant (T.D.)

2 1
Soa = / d%M—g(aRaM(;RO‘ﬁW‘S + DR.3R* + cR2) — = / d*zv/—g lz(RaﬁRaﬁ - §R2) +532]
o
g A . _J
Setting B = 0 gives local conformal symmetry 2 Capys C07°
Reduce from fourth to second order in derivatives with auxiliary field
Sy = [ dizy=g —EG Frof _ 1 (H reb g oopg 5) Integrating out H returns the
H= g g ap 4\ a °°p action for conformal gravity

Introduce Stuckelberg vector field to make all constraints first class

Hop — Huop+ (VaAs + VsA,)

2 1 1
SSOCG = /d4$\/ —g (— a—GagHaﬁ - — (HaﬁHOéﬁ — HaaHﬂﬁ)—ZFagFaB + RaﬁAaAﬁ — Ha[gvﬁAa + HQO‘V,(;A5>

4
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Total non-linear action 24 fields — 2%(4 + 4 + 1) gauge symmetries = 6 dofs v/

Our action is diffeomorphism, “Stickelberg diffeomorphism”, and Weyl invariant
6&9&6 - agﬁﬁgaﬁ - vagﬁ -+ vﬁfa 6(9@5 =0 5wga5 — Qg W(Gap
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Total non-linear action 24 fields — 2%(4 + 4 + 1) gauge symmetries = 6 dofs v/

Our action is diffeomorphism, “Stuckelberg diffeomorphism”, and Weyl invariant

0eGap = AgLlegop = Valp + Vgla  cgap =0 Owfaf = Qg Whap
(Sgﬂag = OdgﬁgHag 6CH04)8 = VQCg + V5Ca (SwHaﬁ = 4V5Vaw + g (ZA(&VB)(U — gaﬁAVVVw)
65./4@ = OégﬁgAa 6§Aa - _Ca (SwAa =0

Choose gauge conditions and introduce sets of NL fields, ghosts, and anti-ghosts

de Donder (standard GR) “de Donder” Feynman (w.r.t. A)

1
D5(v/=99"") = 0 Vsl = 5Valy" =0 H,% + 2V, A% + B =0

{bou c, Ea} —  Sgte + SFpe {Baa O Ca} —  Sgt¢c + SFp¢ {Ba C, C} —  Sgtw + SFPw
Assemble the total non-linear (BRST-invariant) action

St = Ssoca + Sete + Sgtc + Sgr + S¥pe + Srpe + SFpW
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Linearize around Minkowski and drop O(ag) interaction terms

St = Sy + Sint where Sint = O(ay)

Jap—Nap +aghaﬁ




Total free action

Linearize around Minkowski and drop O(ag) interaction terms

ST = SO + Sint where Sint = O(Ofg)

Jap—Nap +aghaﬁ

1 1
S, = / d*z (Maﬁgawmé - (Haﬁﬂaﬁ — H;HB@)— T W F P — Hopg0® AP + H, 05 A”



Total free action

Linearize around Minkowski and drop O(ag) interaction terms

ST = SO + Sint where Sint = O(Ofg)
gaﬁﬁnaﬁ'l'aghaﬁ
1 1
S, = / d*z (4]{“55&3,,,5}7,75 - (HQBHC"@ — Haaﬂﬁﬁ)— T W F P — Hopg0® AP + H, 05 A”

1 1 1
402 (0507 = 5007 ) + Ba (91 = S0°H,” ) + S B(2H,” + 40,4 + B)

(lin) (lin) (lin)
ng& ngC ngw

o




Total free action

Linearize around Minkowski and drop O(ag) interaction terms
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Propagators

Propagators are the components of the inverse of the Hessian matrix

625,
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Propagators

Propagators are the components of the inverse of the Hessian matrix

525 .
—i (0] T® 4P 5 |0) = Q) where  Q4%(p) = / Az 0 —in(z—y)

Important (non-zero) classical field propagators:

) o o o 1 Q «a «a

— i (0| Th*"H® |0) = (77 P+ ) = o (0 A 0™ =)
/
H has a double pole

' af o 1 - af 176 - n’

— i (0] Th*® 1 |0) :—2—132(—@<0|Th H*(0) ) (0| TA AR 0y = — L
p
h has a triple pole A has just a simple pole

High energy behavior is nice, but there is a complicated pole structure in the spin-2 sector



Oscillator decomposition

Make ansatz for each field based on pole structure of its propagators
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Haﬁ(:l?) — H?ﬁ(p)fp(:ﬁ) + H;ﬁ(p)gp(:t) + (h.c.) double pole, need f,and g,

A%(z) = A5 (p) fp(z) + (h.c.) simple pole, just need f,
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Oscillator decomposition

Make ansatz for each field based on pole structure of its propagators
haﬁ(x) = h?ﬁ (p)fp(sl?) + h‘;ﬁ(p)gp(:c) —+ hzﬁ(p)hp(:c) -+ (h.C.) triple pole, need f,, g,, and h,,
HQB(:U) — H?B(p)fp(:n) + H;B(p)gp(m) + (h.c.) double pole, need f,and g,

A%(z) = A?.f (p) fo(x) + (h.c.) simple pole, just need f,
Write higher pole oscillators in terms of other simple oscillators using EOMs/gauge conditions

1 1
Dhag—E(Hang@a(AngBﬁ)Jr@g(AaJrBa)) —0 DHag—é(é’abgnLagba) —0 OA, =0
Oscillator commutators match (-p2) coefficient of the full field propagators

1
[hfaﬁ(p)a H}w(‘])} =3 (N + Nassy — Naptins)0° (P — @) {Afa(p)a A}ﬁ(Q)} = 7ap0" (P — q)



Physical states

BRST transformation singles out six obvious invariant combos of oscillator components
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BRST transformation singles out six obvious invariant combos of oscillator components

Ap,+ = §(hf11 - hf22) Fihgpe  GHt = §(Hfll - Hf22) FiHp2  aax = ﬁ Apr — 5 Fi|l A2 — 5
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Writing oscillators in terms of these operators, transverse polarizations appear naturally

circular polarization tensors longitudinal components (quartets)
o \ J/
hfaﬁ(p) = €+aﬂ(p)ah,+(1?) +c_ap(P)an_(p) +--- + (h.c.)

+ (h.c) All other independent components are longitudinal and
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Physical states

BRST transformation singles out six obvious invariant combos of oscillator components

ah,:l::§(hf11_hff22):|:7fhf12 aH,i—ﬁ( F11 f22) + 1412 aA,:I:—E fl—T:F% 2T TR

[Q,Cbh,i] =0 (Q,ap ] =0 [Q,G,A,i} =0

Writing oscillators in terms of these operators, transverse polarizations appear naturally

circular polarization tensors longitudinal components (quartets)
o \ J/
hfaﬁ(p) = €+aﬂ(p)ah,+(1?) +c_ap(P)an_(p) +--- + (h.c.)

) All other independent components are longitudinal and

H,, =€, 4 a + £ 4 ag + .-+ (h.c.
/ s(P) + 3(P)an+(p) + & as(P)an-(p) ( fit into quartets with the NL, ghost, and anti-ghost fields

Afa(p) = 5+a(p)aA,+(p) +e o(P)aa—(p) +---+ (hc)

Commutators between physical states define the interacting quantum theory

Off-diagonal, indefinite Standard inner
; a1 (p), @l (0)] = Id*(p — @)

T _ 3(m —
[ah,)\(p), aHaN(q)} = oo (p —q) inner product metric! product metric



Unitarity

A healthy S-matrix is pseudo-unitary, leaves the vacuum invariant, and commutes with the
Hamiltonian and BRST charge

spin-1 (definite metric)
spin-2 (indefinite metric) ?
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Unitarity

A healthy S-matrix is pseudo-unitary, leaves the vacuum invariant, and commutes with the
Hamiltonian and BRST charge

B B spin-1 (definite metric)
SST=51S=1 S |0> =S |0> — |0> [%’S] - [Q’S] =0 spin-2 (indefinite metric) ?
Indefinite metric means only off-diagonal interactions contribute to the S-matrix

(n,out|m,in), = (n,out/m,in); =0 (n,out|m,in) , =, (n,in|S|m,in) ; # 0

LSZ reduction formula lets us check the requirement for unitarity explicitly

h (a? il’l|5ﬂL]lS|o:j in>H = Z / d3pm(—1)mh<- . >H 7& 1 (o is some arbitrary initial state)
m=0

This (-1)™ is not typical and comes from the indefinite metric — it spoils unitarity!

(@, in|ST|m, in),, # (h (m,in|S|a, in) , )T



Summary

* We can rewrite fourth order quadratic gravity as a second order theory with
first class constraints by introducing some additional fields

* This rewriting makes QG look remarkably like non-Abelian gauge theory

* This formulation is well-suited for BRST quantization
e Standard techniques let us identify the subspace of physical transverse states
* We can construct all the important quantum operators — Hamiltonian, S-matrix, etc.

* This formalism allows one to study off-shell quantities in quantum QG (e.g.
correlation functions) with tools that were previously unavailable

* The ghost problem may be viewed in the context of indefinite metric QFT

Thank you for your attention!



Comparison to quadratic gravity

An additional auxiliary field is needed, but no conformal symmetry means no scalar BRST fields

Sy = /délx\/i (RX % ) {B;M&?m

Quantum spin-2,1 sectors work out the same, additional spin-0 sector with long. mode of A ()

HOimn|ogin) , = (B;infa;in) =0 (B;infa;in) = dag

Spin-0 sector shows the same off-diagonal indefinite metric behavior



The quantum Hamiltonian

The Heisenberg equation grants us the Hamiltonian operator

(M, pa(x)] = —idhoa(z)  H = / d’p Z_: (E (ai,A(p)aH,A(p) + aL,A(p)ah,A(p)) - % (aL,A(p)aH,A(p)))

Spin-2 Hamiltonian has a single one-particle eigenstate, and an atypical two-particle eigenstate

GLA
Hipy) = 2P ) _ pip.y
H1p. g N = 5 ((Ep/Ea) 0l s(Palya(@) — (Ea/ Bn) " al (@)l (0)) 1) = (B, + E,) [p.a.)

From these we build the unit operator, where the troublesome (-1)™ appears

L= Z Z /dspmqumd3kn(_1)m lpm7qma/\m;kan>Hh<pm7qm:)\m;kan|

man:O Am,Cn



The LSZ reduction formula

Inverting the spin-2 oscillator definitions gives their in-out overlaps
ah)\p —ah,)\p = —1 x(%\aﬁpgpx r) = ——= xg)\aﬁpg,pl‘ X
2 (p) — aif (p) 40 55 as(P)gp (1) O™ (1) = — 5 [ d'2 5 as(P)gy (2)OH ()

a2 (p) — ah (p) = 4 [ ALz, 5(p) f () DH (2)

In regular gauge theory no dipoles appear here, but in fourth order theories they survive

h(p;n’v q:n ’ )\:n ak; ) n’; Out‘pma dm,; )\m: km Cn: 1n>H

1/2 4 * ' *
dia! diy! E [ Eq ) e 5 Wk (e HE (@) gy (21 £

k

;(yfc>—(p’wq’k))mx;ﬁy;] iT[ 5 [ eyl eig l(znmz;]

q=.|+~

/
i/ iy (Bn/Ea) e, (002, (@:)9p: (v1) far (i) — (pwqfs))ﬂwzmwm_—i f d“%’ffcj“j””'(k:f)fkj(ZﬁDzJ

(0| TH o 51 (5'j ) +Hy L B ( )H’y{cﬁ (yll) T H’yv’n,cﬁn, (y:n’)HuﬂV{ (Zi) T H - (Z’:@’)
Ha161( ) o He B (:Cm)H’Ylél (yl) T H’ymém (ym)Hmm(zl) : ,unv ( ) |0>



Full propagators
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More LS/

1

o) = 7" Of,(z) = 0

) =5 (33 +i§)eim Do) =0 Ogpla) = fula)
DM (z —y pr b p® _ D
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