Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

(A)dS Dilatonic Black Holes

Carlo Branchina

LPTHE - Sorbonne Université

02/06/2022

Karim Benakli, C.B., Gaëtan Lafforgue-Marmet Contribution to Planck 2022, Paris

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

ntroduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclus
•	00	0	0000	000	0000	00

Introduction & Motivation

... What we found in the literature...

• Dilatonic BH solution in flat space					
	Gibbons, Maeda / Garfinkle, Horowitz, Strominger				
 Extremality & Thermodynamics 	Holzhey, Wilczek				
 dS Reissner-Nordström & extrema 	Romans/ Antoniadis, Benakli				
 Dilatonic BH solution in (A)dS 	Gao, Zhang/ Elvang, Friedmann, Liu/ Mignemi				

... What we wanted to understand...

• Behaviour & extremality of dilatonic black holes in (A)dS

Interesting for application to WGC

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	•0	0	0000	000	0000	00

The Black Hole Solution

Einstein-Maxwell-Dilaton action

$$S = \int d^4x \ \mathcal{R} - 2(\partial \phi)^2 - e^{-2\alpha\phi}F^2 - V(\phi)$$

Asymptotically (A)dS solutions have been constructed for

Gao, Zhang/ Elvang, Friedmann, Liu/ Mignemi

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

$$V(\phi) = \frac{2}{3} \frac{\Lambda}{1+\alpha^2} \left((3\alpha^4 - \alpha^2)e^{-2\frac{\delta\phi}{\alpha}} + (3-\alpha^2)e^{2\alpha\delta\phi} + 8\alpha^2 e^{\alpha\delta\phi - \frac{\delta\phi}{\alpha}} \right)$$

Λ: cosmological constant; $\delta \phi \equiv \phi - \phi_0$ with ϕ_0 asymptotic value of $\phi(r)$ for $r \to \infty$.

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	0•	0	0000	000	0000	00

The Black Hole Solution

• The solution takes the form

$$\begin{cases} ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + \boxed{r^{2}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1+\alpha^{2}}}}{e^{2\alpha\phi}} d\Omega_{2}^{2} \\ e^{2\alpha\phi} = e^{2\alpha\phi_{0}}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1+\alpha^{2}}} \\ F = \frac{1}{\sqrt{4\pi G}}\frac{Qe^{2\alpha\phi_{0}}}{r} dt \wedge dr \end{cases}$$

$$f(r) = -\left[\left(1 - \frac{r_{+}}{r}\right)\left(1 - \frac{r_{-}}{r}\right)^{\frac{1 - \alpha^{2}}{1 + \alpha^{2}}} \mp H^{2}r^{2}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1 + \alpha^{2}}}\right]$$

$$r_{+} = M + \sqrt{\frac{M^{2} - (1 - \alpha^{2})Q^{2}e^{2\alpha\phi_{0}}}{r_{-}}}$$
$$r_{-} = \frac{\frac{(1 + \alpha^{2})Q^{2}e^{2\alpha\phi_{0}}}{M + \sqrt{\frac{M^{2} - (1 - \alpha^{2})Q^{2}e^{2\alpha\phi_{0}}}}}$$

 $H^2 \equiv |\Lambda|/3$: Hubble parameter

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ 3000</p>

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	•	0000	000	0000	00

Flat space: $\Lambda = 0$

• $\alpha = 0 \Rightarrow$ Reissner-Nordström Black Hole.

$$f(r) = -\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right)$$

Time-like singularity at r = 0

No naked singularity: $Q^2 \leq M^2 \leftrightarrow 2(1)$ horizons

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	•	0000	000	0000	00

Flat space: $\Lambda = 0$

• $\alpha = 0 \Rightarrow$ Reissner-Nordström Black Hole.

$$f(r) = -\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2}\right)$$

Time-like singularity at r = 0

No naked singularity: $Q^2 \leq M^2 \leftrightarrow 2(1)$ horizons

• $\alpha \neq 0$

$$f(r) = -\left[\left(1 - \frac{r_+}{r}\right)\left(1 - \frac{r_-}{r}\right)^{\frac{1 - \alpha^2}{1 + \alpha^2}}\right]$$

Garfinkle, Horowitz, Strominger / Gibbons, Maeda

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Space-like singularity at r_{-}

No naked singularity:

$$r_+>r_-\leftrightarrow Q^2e^{2lpha\phi_0}<(1+lpha^2)M^2\leftrightarrow 1\,\mathrm{horizon}$$

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

 $\alpha = 0 \Rightarrow$ Reissner-Nordström dS Black Hole.

$$f(r) = -\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2} + H^2 r^2\right)$$

Time-like singularity at r = 0.

- 3 horizons
- Only Cosmological horizon
- dS patch eaten

Extremality: $Q^2 = M^2 + M^4 H^2 + O(M^6 H^4)$

⇒ + ⇒ +

고는

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

$$f(r) = -\left[\left(1 - \frac{r_+}{r}\right)\left(1 - \frac{r_-}{r}\right)^{\frac{1 - \alpha^2}{1 + \alpha^2}} - H^2 r^2 \left(1 - \frac{r_-}{r}\right)^{\frac{2\alpha^2}{1 + \alpha^2}}\right]$$
$$\alpha > \alpha_c \equiv \frac{1}{\sqrt{3}}$$

• $\alpha \rightarrow \infty \leftrightarrow Q = 0$: Schwarzschild dS

• Extremality: $Q^2 e^{2\alpha\phi_0} = (1 + \alpha^2)M^2$. Same as in flat space

4日 + 4回 + 4目 + 4目 + 4日 - 900

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

$$f(r) = -\left[\left(1 - \frac{r_{+}}{r}\right)\left(1 - \frac{r_{-}}{r}\right)^{\frac{1 - \alpha^{2}}{1 + \alpha^{2}}} - H^{2}r^{2}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1 + \alpha^{2}}}\right]$$

$$\alpha = \alpha_{c} \equiv \frac{1}{\sqrt{3}}$$

• New extremal solution

$$Q^{2}e^{\frac{2}{\sqrt{3}}\phi_{0}} = \frac{4}{3}M^{2} + \frac{4^{3}}{3^{4}}M^{4}H^{2} + \mathcal{O}(M^{6}H^{4})$$

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

$$f(r) = -\left[\left(1 - \frac{r_{+}}{r}\right) \left(1 - \frac{r_{-}}{r}\right)^{\frac{1 - \alpha^{2}}{1 + \alpha^{2}}} - H^{2}r^{2} \left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1 + \alpha^{2}}} \right]$$
$$0 < \alpha < \alpha_{c} \equiv \frac{1}{\sqrt{2}}$$

• Obstruction to extremal:

$$(1-\alpha^2)Q^2e^{2\alpha\phi_0}=M^2$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

Complex metric: extremality never reached

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

 $\alpha = 0 \Rightarrow$ Reissner-Nordström AdS Black Hole.

$$f(r) = -\left(1 - \frac{2M}{r} + \frac{Q^2}{r^2} + H^2 r^2\right)$$

• Time-like singularity at r = 0

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ●□ ● ● ●

• 2(1) horizons

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

$$f(r) = -\left[\left(1 - \frac{r_{+}}{r}\right)\left(1 - \frac{r_{-}}{r}\right)^{\frac{1 - \alpha^{2}}{1 + \alpha^{2}}} + H^{2}r^{2}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1 + \alpha^{2}}}\right]$$

• 1 horizon + New extremal solution

$$Q^{2}e^{\frac{2}{\sqrt{3}}\phi_{0}} = \frac{4}{3}M^{2} - \frac{4^{3}}{3^{4}}M^{4}H^{2} + \mathcal{O}(M^{6}H^{4})$$

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ 3000</p>

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

$$f(r) = -\left[\left(1 - \frac{r_+}{r}\right)\left(1 - \frac{r_-}{r}\right)^{\frac{1-\alpha^2}{1+\alpha^2}} + H^2 r^2 \left(1 - \frac{r_-}{r}\right)^{\frac{2\alpha^2}{1+\alpha^2}}\right]$$
$$0 < \alpha < \alpha_c \equiv \frac{1}{\sqrt{3}}$$

- 2(1) horizons ⇔ Singularity changes nature to "emulate" RN AdS
- RN-type extremality: Cauchy surface = event horizon

$$Q^{2}e^{2\alpha\phi_{0}} = (1+\alpha^{2})M^{2} + \alpha^{2}(1+\alpha^{2})^{\frac{2}{1-\alpha^{2}}}c M^{\frac{3-\alpha^{2}}{1-\alpha^{2}}}H^{\frac{1+\alpha^{2}}{1-\alpha^{2}}} + o(M^{\frac{3-\alpha^{2}}{1-\alpha^{2}}}H^{\frac{1+\alpha^{2}}{1-\alpha^{2}}})$$

= nan

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

 $\Lambda = 0$

Hawking temperature

Schwarzschild

$$T = \frac{1}{8\pi M}$$

"Extremality": $T \to \infty$

Reissner-Nordström

$$T = rac{1}{2\pi} rac{\sqrt{M^2 - Q^2}}{\left(M + \sqrt{M^2 - Q^2}
ight)^2}$$

Extremality: $T o 0$

・ロト・日本・モト・モト 田本 のへの

Introduction & Motivation O	The BH Solution	$egin{array}{c} \Lambda &= 0 \ O \end{array}$	Λ > 0 0000	$\Lambda < 0$ 0000	Thermodynamics •000	Conclusions 00
$\Lambda = 0$	Т	hermoo	dynami	ics		

Hawking temperature

Schwarzschild Reissner-Nordström $T = \frac{1}{2\pi} \frac{\sqrt{M^2 - Q^2}}{\left(M + \sqrt{M^2 - Q^2}\right)^2}$ $T = \frac{1}{2 - M}$ "Extremality": $T \rightarrow \infty$ Extremality: $T \rightarrow 0$ <u>Dilatonic Black holes</u>: $T = \frac{1}{2\pi r_{\perp}} \left(1 - \frac{r_{-}}{r_{-}}\right)^{\frac{1-\alpha^2}{1+\alpha^2}}$ Extremality $(r_+ \rightarrow r_-)$ Holzhey, Wilczek $\alpha = 1$ finite $0 < \alpha < 1$ vanishes $\alpha > 1$ diverges Hawking-Beckenstein entropy $S = \pi r_h^2 \left(1 - \frac{r_-}{r_h} \right)^{\frac{2\alpha^2}{1+\alpha^2}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extremality: $S \rightarrow 0$ $\forall \alpha \neq 0$

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

 $\Lambda \neq 0$

Hawking temperature

"Extremality":
$$T
ightarrow \infty$$

 $\frac{\text{Reissner-Nordström}}{T = \frac{1}{4\pi} \frac{1 - \frac{q^2}{r_h^2} \mp 3H^2 r_h^2}{r_h}}$ Extremality: $T \to 0$

Dilatonic Black holes:

$$T = \frac{1}{4\pi} \left[\frac{r_{+}}{r_{h}^{2}} \left(1 - \frac{r_{-}}{r_{h}} \right)^{\frac{1-\alpha^{2}}{1+\alpha^{2}}} + \frac{1-\alpha^{2}}{1+\alpha^{2}} \left(1 - \frac{r_{+}}{r_{h}} \right) \left(1 - \frac{r_{-}}{r_{h}} \right)^{-\frac{2\alpha^{2}}{1+\alpha^{2}}} \frac{r_{-}}{r_{h}^{2}}$$
$$\mp 2H^{2}r_{h} \left(1 - \frac{r_{-}}{r_{h}} \right)^{\frac{2\alpha^{2}}{1+\alpha^{2}}} \mp 2\frac{\alpha^{2}}{1+\alpha^{2}}H^{2}r_{-} \left(1 - \frac{r_{-}}{r_{h}} \right)^{-\frac{1-\alpha^{2}}{1+\alpha^{2}}} \right]$$

(ロト・日本・モー・モー・ 三日、 のへで)

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	00

Hawking temperature

• $\alpha > \alpha_c$ Extremal limit $r_h \to r_-(=r_+)$ 1. $\alpha > 1$ $T \sim_{r_h \to r_-} \frac{1}{4\pi r_h} \frac{2}{1+\alpha^2} \left(1 - \frac{r_-}{r_h}\right)^{\frac{1-\alpha^2}{1+\alpha^2}}$ diverges 2. $\alpha_c < \alpha < 1$ $T \sim_{r_h \to r_-} \frac{1}{2\pi} \frac{\alpha^2}{1+\alpha^2} H^2 r_- \left(1 - \frac{r_-}{r_h}\right)^{-\frac{1-\alpha^2}{1+\alpha^2}}$ diverges 3. $\alpha = 1$ $T = \frac{1}{4\pi} \left(\frac{1}{2M} \mp 2MH^2\right)$ always finite ≥ 0

In dS the extremal black holes with singularity the size of the Hubble horizon have $\mathcal{T}=0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Hawking temperature

• $\alpha = \alpha_c$ Extremal limit $r_h \rightarrow r_- \neq r_+$

$$T \xrightarrow[r_h \to r_-]{} \frac{1}{8\pi} \frac{r_-}{r_h^2} \left(1 - \frac{r_+}{r_h} \mp H^2 r_h^2 \right) \left(1 - \frac{r_-}{r_h} \right)^{-\frac{1}{2}} = 0$$

1

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

 $\implies \text{New discontinuity in the } \alpha \text{ dependence of } T_{\text{extr}} \text{ for } \alpha = \alpha_c$ • $0 < \alpha < \alpha_c$

NO extremality in dS

• New extremality in AdS
$$\Rightarrow r_h \neq r_- \Rightarrow \begin{cases} T \text{ finite} \\ S \neq 0 \end{cases}$$

Introduction & Motivation O	The BH Solutio	n	$egin{array}{c} \Lambda &= 0 \ O \end{array}$	$\Lambda > 0$ 0000	$\Lambda < 0$ 000	Thermodynamics 0000	Conclusions •O
	~						

Conclusions: $\Lambda = 0$ vs $\Lambda \neq 0$

...Similarities...

- Above $\alpha_c \equiv \frac{1}{\sqrt{3}}$ singularity space-like with 1 less horizon than RN
- Same extremality bound above α_c
- Interpolation between a Sc-like to RN-like behaviour with turning point at $\alpha = 1$ ($\Lambda = 0$) or α_c ($\Lambda \neq 0$)

...Differences...

• Existence of a transition value α_c stronger than turning point $\alpha = 1$

- New extremality $(\alpha = \alpha_c)$; $\alpha < \alpha_c$: different singularity ($\Lambda < 0$) or obstruction ($\Lambda > 0$)
- $\alpha_c < \alpha < 1$: T close to extremality driven by Λ
- Trivial endpoint of Hawking evaporation at $\alpha = 1$ ($\Lambda > 0$)
- $S_{
 m extr}
 eq 0$ below $\alpha_{
 m c}$ ($\Lambda < 0$)

Introduction & Motivation	The BH Solution	$\Lambda = 0$	$\Lambda > 0$	$\Lambda < 0$	Thermodynamics	Conclusions
0	00	0	0000	000	0000	0.

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Geometrized units

$$M = \frac{\kappa^2 \tilde{M}}{8\pi} \qquad Q^2 = \frac{\kappa^2 \tilde{Q}^2}{32\pi^2} \qquad \Rightarrow \qquad \frac{M^2}{Q^2} = \frac{\kappa^2}{2} \frac{\tilde{M}^2}{\tilde{Q}^2}$$
$$\kappa^2 = 1/M_P^2 = 8\pi G \equiv 8\pi \text{ and } G \text{ Newton's constant}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Bijection $(r_+, r_-) \Leftrightarrow (M, Q)$

$$\begin{cases} 2M = r_{+} + \frac{1-\alpha^{2}}{1+\alpha^{2}}r_{-}, \\ Q^{2}e^{2\alpha\phi_{0}} = \frac{r_{+}r_{-}}{1+\alpha^{2}}, \end{cases} \Leftrightarrow \begin{cases} r_{+} = M \pm \sqrt{M^{2} - (1-\alpha^{2})Q^{2}e^{2\alpha\phi_{0}}} \\ r_{-} = \frac{(1+\alpha^{2})Q^{2}e^{2\alpha\phi_{0}}}{M \pm \sqrt{M^{2} - (1-\alpha^{2})Q^{2}e^{2\alpha\phi_{0}}}}, \end{cases}$$

- For Q = 0 to correspond to Schwarzschild \Rightarrow Upper sign
- α ≥ 1: (r₊, r₋) plane covers whole (M, Q) one;
 1. For r₊ < [(α² − 1)/(α² + 1)] r₋ ⇒ M < 0 : unphysical
 2. Bijection defined between r₊ ≥ [(α² − 1)/(α² + 1)] r₋ and (M, Q)

Bijection $(r_+, r_-) \Leftrightarrow (M, Q)$

• $0 < \alpha < 1$: for $M^2 < (1 - \alpha^2)Q^2 e^{2\alpha\phi_0}$ complex metric. Inaccessible part of the (M, Q) plane manifests

$$M^2 - (1 - \alpha^2)Q^2 e^{2\alpha\phi_0} = \left(\frac{r_+}{2} - \frac{1 - \alpha^2}{1 + \alpha^2}\frac{r_-}{2}\right)^2 \ge 0.$$

Writing $r_{-} = r_{+} \tan \theta$

$$\frac{Q^2 e^{2\alpha\phi_0}}{M^2} = \frac{4}{1+\alpha^2} \frac{\tan\theta}{\left(1+\frac{1-\alpha^2}{1+\alpha^2}\tan\theta\right)^2}$$

1. Increases from 0 to $1/(1 - \alpha^2)$ for $\theta \in \left[0, \arctan \frac{1 + \alpha^2}{1 - \alpha^2}\right]$ 2. Decreases to 0 for $\theta \in \left[\arctan \frac{1 + \alpha^2}{1 - \alpha^2}, \frac{\pi}{2}\right]$.

In (2) $(1-\alpha^2) Q^2 e^{2\alpha\phi_0} < M^2$, Q = 0 for $r_+ = 0$, but metric does not reduce to Schwarzschild.

 $\Rightarrow \text{ Bijection defined between the } r_+ \ge \left[(1-\alpha^2)/(1+\alpha^2)\right]r_- \text{ and}$ the $M^2 \ge (1-\alpha^2)Q^2e^{2\alpha\phi_0}$ portions of the planes.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Maximal masses

•
$$\alpha = 1$$
: $(Qe^{\phi_0}H, MH) = (\frac{1}{2}, \frac{1}{\sqrt{2}})$
• $\alpha = \frac{1}{\sqrt{3}}$: $(Qe^{\frac{\phi_0}{\sqrt{3}}}H, MH) = (\frac{1}{\sqrt{6}}, \frac{7}{12\sqrt{3}})$
• $0 < \alpha < \frac{1}{\sqrt{3}}$: $M_{\max} = \frac{1}{2\sqrt{2}H} \left(\frac{1-3\alpha^2}{2(1-\alpha^2)}\right)^{\frac{1-3\alpha^2}{2(1+\alpha^2)}}$

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

Technique

$$f(r) = -\left[\left(1 - \frac{r_{+}}{r}\right)\left(1 - \frac{r_{-}}{r}\right)^{\frac{1 - \alpha^{2}}{1 + \alpha^{2}}} \mp H^{2}r^{2}\left(1 - \frac{r_{-}}{r}\right)^{\frac{2\alpha^{2}}{1 + \alpha^{2}}}\right]$$
$$\Rightarrow F(r) \equiv \left[r - r_{+} \mp H^{2}r^{3}\left(1 - \frac{r_{-}}{r}\right)^{\frac{3\alpha^{2} - 1}{1 + \alpha^{2}}}\right] \equiv A(r) + B(r)$$

- Find the intersection points of A(r) and B(r)
- Extremal Black Holes found at change in behaviour of one of the two curves (depending on $\alpha \alpha_c$)
- Nariai Black Holes obtained for the combined solution

$$\begin{cases} F(r) = 0\\ F'(r) = 0 \end{cases}$$

Point particle reduction

$$S_{m} = \int \mathrm{d}\tau \left(-m(\phi) \sqrt{-g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} + \sqrt{4\pi G} g q A_{\mu} \dot{x}^{\mu} \right)$$

Scalar charge and properties of BH are encoded in the function $m(\phi)$

$$m(\phi) = m(\bar{\phi}) \left(1 + \gamma(\bar{\phi})(\phi - \bar{\phi}) + \frac{1}{2} \left(\gamma^2(\bar{\phi}) + \beta(\bar{\phi}) \right) (\phi - \bar{\phi})^2 + \mathcal{O} \left((\phi - \bar{\phi})^3 \right) \right)$$

$$\begin{cases} \gamma(\phi) = \frac{\alpha}{1-\alpha^2} \left(1 - \sqrt{1 - (1-\alpha^2) \frac{q^2}{m^2(\phi)}} e^{2\alpha\phi} \right) \\ \beta(\phi) = \frac{\alpha^2}{1-\alpha^2} \frac{q^2 e^{2\alpha\phi}}{m^2(\phi)} \left(1 - \frac{\alpha^2}{\sqrt{1 - (1-\alpha^2) \frac{q^2}{m^2(\phi)}} e^{2\alpha\phi}} \right) \end{cases}$$

Identifications from compactification

• Identifying
$$g = e^{lpha \phi}$$
 and $g_0 = e^{lpha \phi_0}$

$$V(\phi) = \frac{2}{3} \frac{\Lambda}{1+\alpha^2} \left((3\alpha^4 - \alpha^2) \left(\frac{g}{g_0}\right)^{-\frac{2}{\alpha^2}} + (3-\alpha^2) \left(\frac{g}{g_0}\right)^2 + 8\alpha^2 \left(\frac{g}{g_0}\right)^{1-\frac{1}{\alpha^2}} \right)$$

 $\alpha = 1$

$$V(\phi) = \frac{\Lambda}{3} \left(\left(\frac{g_0}{g} \right)^2 + \left(\frac{g}{g_0} \right)^2 + 4 \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・