Sterile neutrino from D-brane SM-like models

Christos Kokorelis

American University of Malta

Planck 2022

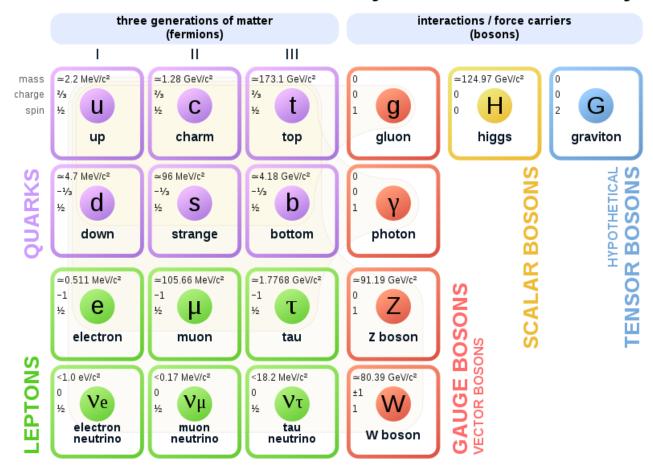
OUTLINE

- Neutrino (s) mass in the Standard Model
- Neutrino (s) mass beyond Standard Model
 (D-branes)

Neutrino mass in string theory

 e.g Intersecting D6-brane models

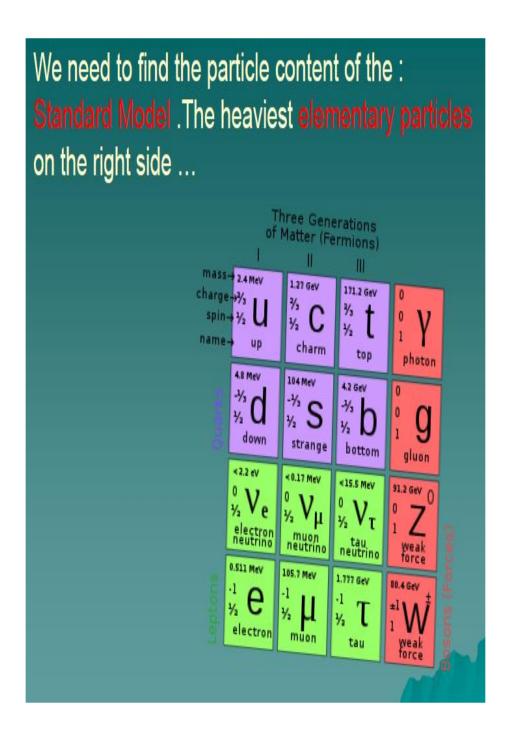
 [open strings]


• • Examine models with:

gauged baryon number (stable proton)	J
right handed neutrinos -	<mark>√</mark>
sterile neutrinos -	?

+ right handed neutrinos +

→ → STANDARD MODEL from D-Branes


Standard Model of Elementary Particles and Gravity

Accommodates 3 generations of neutrinos

BUT

- No gravity
- NO Mass term for neutrinos

For a model BEYOND the SM

Motivation for introducing mass term for neutrinos → beyond the SM

- No mass term for neutrinos in the SM
- A mass can only be introduced beyond the SM e.g. by adding a right handed neutrino (s)
- Discovery of neutrino oscillations
 (Super-Kamiokande experiment /1998)
 Neutrinos have a non-zero mass => BEYOND SM
- Explain excess of low energy electronic recoil events, over known backgrounds, observed at XENON1T experiment

More info

• Dark Matter (DM) contributes five times more to the energy of the Universe than ordinary matter

(Weakly interacting) dark matter candidates => sterile neutrinos of KeV masses + with small mixing with active neutrinos. See e.g.

Light sterile neutrinos : A white paper, https://arxiv.org/pdf/1204.5379.pdf;

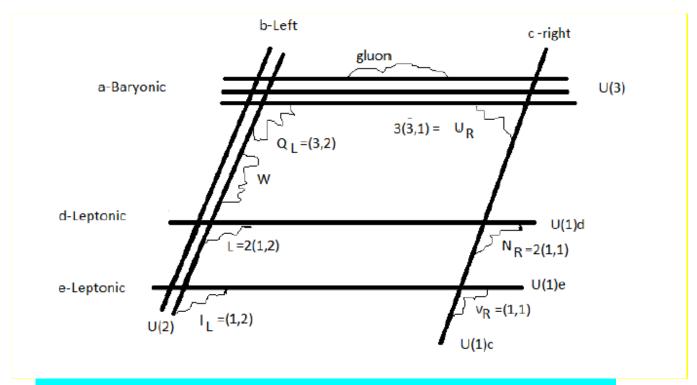
T2K experiment → STERILE NEUTRINOS < 1 eV

STRING THEORY


1 Macroscopic level - matter, 2 Molecular level, 3 Atomic level, 4 Electrons, 5 Quarks, 6 String Theory

Particles → localized among intersecting branes

What is an intersecting brane? A higher dimensional hypersurface


Simplest representation

e-
$$\rightarrow$$
 (2,1) reprentation \rightarrow and charges (1,-1)

Model

Gauge Group:

SU(3)a x SU(2)b x U(1)a x U(1) b x U(1)c x U(1) d x U(1)e

C.K

5-stack (string) Standard Model

$$L = Q_d + Q_e$$

$$Q_a = 3B$$
,

Matter Fields		Intersection	Q_a	$Q_{\mathfrak{b}}$	Q_c	Q_d	Q_e	Y
Q_L	(3, 2)	$I_{ab}=1$	1	-1	0	0	0	1/6
q_L	2(3,2)	$I_{ab^*}=2$	1	1	0	0	0	1/6
U_R	$3(\bar{3},1)$	$I_{ac}=-3$	-1	0	1	0	0	-2/3
D_R	3(3,1)	$I_{ao^*} = -3$	-1	0	-1	0	0	1/3
L	2(1,2)	$I_{bd}=-2$	0	-1	0	1	0	-1/2
l_L	(1, 2)	$I_{be}=-1$	0	-1	0	0	1	-1/2
N_R	2(1,1)	$I_{cd}=2$	0	0	1	-1	0	0
E_R	2(1,1)	$I_{cd^*} = -2$	0	0	-1	-1	0	1
ν_R	(1, 1)	$I_{ce} = 1$	0	0	1	0	-1	0
ϵ_R	(1, 1)	$I_{ce^*} = -1$	0	0	-1	0	-1	1

C.K, hep-th/0205147

MATTER SPECTRUM

Matter Fields		Intersection	Q_a	Q_b	Q_c	Q_d	Q_e	Y
Q_L	(3, 2)	$I_{ab}=1$	1	-1	0	0	0	1/6
q_L	2(3, 2)	$I_{ab^*}=2$	1	1	0	0	0	1/6
U_R	3(3,1)	$I_{ac} = -3$	-1	0	1	0	0	-2/3
D_R	3(3,1)	$I_{ac^*} = -3$	-1	0	-1	0	0	1/3
L	2(1,2)	$I_{bd} = -2$	0	-1	0	1	0	-1/2
l_L	(1, 2)	$I_{be} = -1$	0	-1	0	0	1	-1/2
N_R	2(1,1)	$I_{cd} = 2$	0	0	1	-1	0	0
E_R	2(1,1)	$I_{cd^*} = -2$	0	0	-1	-1	0	1
ν_R	(1,1)	$I_{ce} = 1$	0	0	1	0	-1	0
e_R	(1,1)	$I_{ce^*} = -1$	0	0	-1	0	-1	1

Table 1: Low energy fermionic spectrum of the five stack string scale $SU(3)_C \otimes SU(2)_L \otimes U(1)_a \otimes U(1)_b \otimes U(1)_c \otimes U(1)_d \otimes U(1)_e$, type I D6-brane model together with its U(1) charges. Note that at low energies only the SM gauge group $SU(3) \otimes SU(2)_L \otimes U(1)_Y$ survives.

Predicts..

◆ The existence of only 1 or 2 supersymmetric particles: The spartners of the right handed neutrino, the sneutrino. The 2 sneutrinos come from the same intersection.

$$Q_a - 3Q_d - 3Q_e = 3(B - L)$$

Neutrinos in the right magnitude from chiral condensate

$$\alpha'(LN_R) (Q_LU_R)^*$$
, $\alpha'(l\nu_R)(q_LU_R)$.

$$\frac{\langle u_R u_L \rangle}{M_s^2} = \frac{(240 MeV)^3}{M_s^2}$$

EXPLAINSLHCb b-ANOMALIES

A Stringy explanation of b \rightarrow s ℓ^+ ℓ^- anomalies"

A. Celis, W. Feng, D. Lust

 $\downarrow\downarrow$

Stringy Z' boson -> nonnegligible couplings to the first two quark generations

Z' Mass \rightarrow \sim [3.5, 5.5] TeV,

should be possible to discover such a state directly during the next LHC runs via Drell-Yan production in:

di-electron or di-muon decay channels

 $Br(Z' \to \mu^+ \mu^-)/Br(Z' \to e^+ e^-) \sim [0.5\text{-}0.9]$

NEUTRINO MASSES

can originate via chiral symmetry breaking

C.K;

Ibanez, Marchesano, Rabadan

$$\alpha'(LN_R) (Q_L U_R)^*, \quad \alpha'(l\nu_R)(q_L U_R)$$

From u-quark chiral condensate

$$\frac{\langle u_R u_L \rangle}{M_s^2} = \frac{(240 MeV)^3}{M_s^2}$$

 $Mv \sim (0.1-10 \text{ eV})$

STERILE NEUTRINOS

Sterile neutrinos in GAUGE THEORY →

Inverse See Saw mechanism

$$\lambda_1 \nu_R \nu_L H + \lambda_2 \nu_R H N + \lambda_3 \frac{1}{M_{GUT}} \bar{K}^2 N N$$

$$m_D = \lambda_1 \langle H \rangle, \ V_R = \lambda_2 \langle H \rangle, \ \mu = \frac{\lambda_3}{M_{GUT}} \langle \tilde{\bar{K}} \rangle^2$$

$$\begin{pmatrix}
0 & m_D^T & 0 \\
m_D & 0 & V_R \\
0 & V_R & \mu
\end{pmatrix}$$

Valle; Leontaris and Shafi,...

Sterile neutrinos in INTERSECTING D-BRANE models

$$\mathcal{L} = m_D \nu_L \nu_R + m_N \nu_R N_1 + m_{\Sigma} \nu_L N_1 + \cdots$$

- Sterile neutrinos in eigenstate basis (v_L, v_R, N_1)
- **→** mass matrix

$$\left(egin{array}{cccc} 0 & m_D & m_\Sigma \ m_D & 0 & m_N \ m_\Sigma & m_N & 0 \end{array}
ight)$$
 BARYON # CONSERVED

I.Antoniadis and C.K

Sterile neutrinos → Calabi-Yau compactifications

Mohapatra and Valle
Faraggi; Leontaris, ..

(NO BARYON # conservation)