	Leptogenesis	Analysis	Conclusions
00000	000000	0000	

Leptogenesis in a Singlet-Doublet Scotogenic Model

Amitayus Banik

(work with A. Alvarez, R. Cepedello, B. Herrmann, W. Porod, M. Sarazin, M. Schnelke)

Planck 2022

 1^{st} June 2022

	Leptogenesis	Analysis	Conclusions
Outline			

- Motivation
- The Model

2 Leptogenesis

- Sakharov Conditions for Leptogenesis
- Ingredients
- Boltzmann Equations

3 Analysis

- Scanning the Parameter Space
- Results

Introduction	Leptogenesis	Analysis	Conclusions
0000	0000000	0000	00
Scotogenic	Models		

• Classic form: Standard Model (SM) extended with a scalar SU(2) doublet $\eta = \left[\eta^+ \eta^0\right]^{\mathsf{T}}$ and 3 singlet fermions N_i charged odd under a \mathbb{Z}_2 symmetry.

E. Ma (2006)

• SM neutrinos remain massless at tree-level, masses generated at one-loop level \rightarrow suppressed by a factor $\frac{\lambda_5}{16\pi^2} \rightarrow$ allows for lower masses for N_i (compared to Seesaw models).

Introduction	Leptogenesis		Conclusions
00000	000000	0000	00
Scotogenic Models	S		

• Classic form: Standard Model (SM) extended with a scalar SU(2) doublet $\eta = [\eta^+ \eta^0]^{\mathsf{T}}$ and 3 singlet fermions N_i charged odd under a \mathbb{Z}_2 symmetry.

E. Ma (2006)

- SM neutrinos remain massless at tree-level, masses generated at one-loop level \rightarrow suppressed by a factor $\frac{\lambda_5}{16\pi^2} \rightarrow$ allows for lower masses for N_i (compared to Seesaw models).
- The \mathbb{Z}_2 symmetry allows for a dark matter (DM) candidate.
- The fermionic singlets can drive leptogenesis.
 C. S. Fong, E. Nardi, A. Riotto (2013); T. Hugle, M. Platscher and K. Schmitz (2018); S. Baumholzer, V. Brdar, P. Schwaller (2018)

Introduction	Leptogenesis	Analysis	Conclusions
00000	0000000	0000	00
THIS Scoto	genic Model		

- Two fermionic singlets $N_{1,2}$ and a scalar doublet η .
- Extra singlet scalar S in the scalar sector.
- Extra two fermionic doublets $\Psi_{L,R}$ with equal $U(1)_Y$ hypercharge.

$$\Psi_{L,R} = \begin{bmatrix} \psi_{L,R}^0 \\ \psi_{L,R}^- \end{bmatrix}$$

Field Content and	Interactions		
00000	000000	0000	00
Introduction	Leptogenesis	Analysis	Conclusions

Field Content and Interactions

	N_i	$\Psi_{L,R}$	η	S	H	L_i	$e_{R,i}$
$SU(2)_L$	1	2	2	1	2	2	1
U(1) _Y	0	-1	+1	0	+1	-1	-2
\mathbb{Z}_2	-1	-1	-1	-1	+1	+1	+1

$$\begin{split} -\mathcal{L}_{\text{i.a.}} = & g_N N_i (L \cdot \eta) + g_R \, \eta^\dagger \Psi_L e_R^C + g_\Psi \, (\overline{\Psi}_R \cdot L) S \\ & + y_L (\Psi_L \cdot H) N_i + y_R (\Psi_R \cdot H) \overline{N}_i + \kappa \, \eta^\dagger H S + \text{h.c.} \end{split}$$

Have additional contributions to neutrino masses, for e.g.

Introduction	Leptogenesis		Conclusions
00000	000000	0000	00

Field Content and Interactions

	N_i	$\Psi_{L,R}$	η	S	H	L_i	$e_{R,i}$
$SU(2)_L$	1	2	2	1	2	2	1
U(1) _Y	0	-1	+1	0	+1	-1	-2
\mathbb{Z}_2	-1	-1	-1	-1	+1	+1	+1
Lepton No.	0	+1	0	0	0	+1	+1

$$\begin{split} -\mathcal{L}_{\text{i.a.}} = & g_N N_i (L \cdot \eta) + g_R \, \eta^{\dagger} \Psi_L e_R^C + g_\Psi \, (\overline{\Psi}_R \cdot L) S \\ & + \frac{y_L (\Psi_L \cdot H) N_i + y_R (\Psi_R \cdot H) \overline{N}_i + \kappa \, \eta^{\dagger} H S + \text{h.c.} \end{split}$$

Sakharov	Conditions for Leptog	enesis	
	000000		
Introduction	Leptogenesis	Analysis	Conclusions

• $\Delta L \neq 0$ processes \rightarrow satisfied by processes mediated by the Yukawa couplings g_N , y_L and y_R .

(Need active sphaleron transitions to convert the lepton asymmetry to a baryon asymmetry.)

- Out-of-equilibrium decay of at least one of the N_i.
- C and CP violation \rightarrow satisfied by complex phases in one or more of g_N , y_L and y_R .

Introduction	Leptogenesis	Analysis	Conclusions
00000	000000	0000	
Lepton Asymmetr	у є		

• Difference between decay rates of the N_i into leptons and anti-leptons.

• At tree-level, this is 0; generated at lowest order by interference between tree-level and one-loop diagrams.

Introduction	Leptogenesis	Analysis	Conclusions
00000	000000	0000	00
ϵ for this model			

• Have the usual self-energy and triangle diagrams in "vanilla leptogenesis". These can be related to the SM neutrino masses.

T. Hugle, M. Platscher and K. Schmitz (2018)

• But also have additional triangle diagrams with different coupling combinations.

Washout Pr	CC C C C C C C C C C C C C C C C C C C		
00000	000000	0000	00
	Leptogenesis	Analysis	Conclusions

- Attempt to erase any lepton asymmetry generated.
- Inverse decays, i.e. production of the N_i

• Two-to-two scatterings that modify lepton number, for e.g.

Washout I	Processes		
00000	0000000	0000	00
	Leptogenesis	Analysis	Conclusions

• Effectiveness of processes determined by ratio of relevant rate w.r.t. the Hubble parameter, i.e.

$$W_D = \frac{\langle \Gamma_{N_i} \rangle}{H(M_i) \, z_i} \,, \qquad \Delta W = \frac{\langle \sigma v \rangle_{\Delta L \neq 0}}{H(M_i) \, z_i}$$

where $\langle \dots \rangle$ denotes velocity averaging.

• Define decay parameter

$$K_i = \frac{\Gamma_{N_i}^{\text{tree}}}{H(M_i)}$$

This can be related to the SM neutrino masses.

See for e.g. W. Buchmuller, P. Di Bari and M. Plumacher (2004) or S. Davidson, E. Nardi and Y. Nir (2008)

- Different washout regimes characterized by values of K_i
- $K_i > 3$: strong washout regime, where inverse decays are dominant source of washout.

Introduction		Analysis	Conclusions
Boltzmann E	quations		

Define variables
$$z_i = \frac{M_i}{T}$$
, so $z_2 = \frac{M_2}{M_1} z_1$.

$$\frac{dN_{N_i}}{dz_i} = -z_i K_i \frac{\mathcal{K}_1(z_i)}{\mathcal{K}_2(z_i)} \left(N_{N_i} - N_{N_i}^{\mathsf{eq}} \right) \to \mathsf{Out} \text{ of equilib. decays of } N_i$$
$$\frac{dN_{B-L}}{dz_1} = -\underbrace{z_1 \left[\sum_{i=1}^2 \epsilon_i K_i \frac{\mathcal{K}_1(z_i)}{\mathcal{K}_2(z_i)} \left(N_{N_i} - N_{N_i}^{\mathsf{eq}} \right) \right]}_{\mathsf{production of asymmetry}} - \underbrace{(W_D + \Delta W) N_{B-L}}_{\mathsf{washout of asymmetry}} .$$

	Leptogenesis	Analysis	Conclusions
00000	000000	0000	00
Solving the Equa	tions		

• Start at $T \gg M_2$ with the initial conditions

$$N_{N_i} = N_{N_i}^{\text{eq.}} \quad \text{and} \quad N_{B-L} = 0$$

- Track the number densities down to low temperatures and ascertain $N^f_{B-L}=N_{B-L}(z_1\gg 1)$
- This value is converted to be compared to the observed baryon-to-photon ratio η_B as

$$\eta_B = \left(\frac{3}{4} \, C_{\rm sph.} \, \frac{g^0_*}{g_*}\right) \, N^f_{B-L} \label{eq:gamma_basis}$$

where $C_{\text{sph.}} = \frac{8}{23}$, $g_*^0 = \frac{43}{11}$ and $g_* = 122.25$.

	Leptogenesis	Analysis	Conclusions
00000	0000000	000	00
Choice of Parame	ters		

- Large parameter space makes phenomenological analysis difficult → focus on fitting certain observables and adhering to important constraints from experiments.
- Observables focused on: $(\mathbf{g} \mathbf{2})_{\mu}$ anomaly and neutrino oscillation data $\rightarrow g_{\Psi}^{\mu}, g_{R}^{\mu}$ need to be $\mathcal{O}(1)$ and simultaneously need to suppress g_{N} and $y_{L,R}$.
- Important constraints come from lepton-flavor violating processes.
- Result: in the strong washout regime for most of the parameter space!

In fact, find $K_i > 10^3$ in some cases.

Introduction	Leptogenesis	Analysis	Conclusions
00000	000000	0000	00
Dark Matter			

- Dark Matter (DM) is stabilized by the \mathbb{Z}_2 symmetry.
- Can be fermionic or (pseudo-)scalar DM depending on the mass hierarchies
- Can DM be accommodated with successful leptogenesis, i.e. fit the relic density of $\Omega_{\rm CDM}h^2=0.120\pm0.001?$ PLANCK Collab. (2018).

Figure: The black line denotes the observed baryon-to-photon ratio of 6.1×10^{-10} (PLANCK 2018). Blue: Points where DM is underproduced. Red: Points which are compatible with the DM relic density. Gray: Points where DM is overproduced.

Figure: The black line denotes the constraint on the spin independent cross section from XENON1T (2018). Points in red are those that are consistent with the relic abundance of DM and are $\eta_B = \mathcal{O}(10^{-10})$.

	Leptogenesis	Analysis	Conclusions
			•0
Conclusions			

- This model allows for correct fitting of neutrino oscillation data and the $(g-2)_{\mu}$ anomaly, while simultaneously allowing leptogenesis and can allow for a DM candidate.
- Low-scale leptogenesis is achievable in this model despite being in the strong washout regime

(compare to T. Hugle, M. Platscher and K. Schmitz (2018))

• This is due to large asymmetries generated by the additional diagrams, which are not directly linked to the SM neutrino masses.

	Leptogenesis		Conclusions
00000	000000	0000	00

Thank you for your attention!

M_i (GeV)	(2995.87, 29098.4)	(6245.84, 8344.45)	(28107.1, 50511.8)
m_{Ψ} (GeV)	1550.17	1082.31	961.334
$m_{\eta} (\text{GeV})$	871.799	688.1	985.834
m_S (GeV)	1032.75	815.851	1714.54
κ (GeV)	-95.6814	-74.9958	213.463
$m_{DM} (GeV)$	604.507	658.2	956.598

Point I: Yukawas

$Abs[g_N]$	$\begin{bmatrix} 0.000196875 & 0.000258659 & 0.000290772 \\ 0.000164498 & 0.000269855 & 0.00033933 \end{bmatrix}$
$Arg[g_N]$	$\begin{bmatrix} -0.167833 & -3.01165 & -0.000194745 \\ -2.90506 & -0.0748 & 0.00113468 \end{bmatrix}$
y_L	$(-3.11548 \times 10^{-7}, -4.98527 \times 10^{-7})$
y_R	$(-1.3845 \times 10^{-6}, 4.753 \times 10^{-8})$
$Abs[g_\Psi]$	$(1.94784 \times 10^{-16}, 1.27257, 0.00001)$
$Arg[g_{\Psi}]$	$(-1.6421, -1.57181, -1.11022 \times 10^{-11})$
$Abs[g_R]$	$(4.15957 \times 10^{-8}, 2.03444, 0.000542719)$
$Arg[g_R]$	(0, -1.5708, 0)

Point II: Yukawas

$Abs[g_N]$	0.00025192 0.000324012 0.000372069
	$\begin{bmatrix} 0.0000977959 & 0.000148393 & 0.000187301 \end{bmatrix}$
Arg[a]	$\begin{bmatrix} -0.168378 & -3.04506 & -0.000740242 \end{bmatrix}$
$\operatorname{Arg}[g_N]$	0.222556 2.87647 -3.13712
y_L	$(-2.70576 \times 10^{-7}, -1.08754 \times 10^{-8})$
y_R	$(-2.65633 \times 10^{-8}, -3.91531 \times 10^{-6})$
$Abs[g_{\Psi}]$	$(1.11886 \times 10^{-16}, 1.18162, 0.00001)$
$Arg[g_{\Psi}]$	$(1.44644, 1.56707, -1.11022 \times 10^{-11})$
$Abs[g_R]$	$(2.2584 \times 10^{-8}, 1.10311, 0.000294736)$
$Arg[g_R]$	(0, 1.5708, 0)

Point III: Yukawas

$Abs[g_N]$	$\begin{bmatrix} 0.0000868255 & 0.000114045 & 0.000128236 \end{bmatrix}$
	$\begin{bmatrix} 0.0000340783 & 0.0000575288 & 0.0000716666 \end{bmatrix}$
م سرماً	$\begin{bmatrix} -0.167697 & -3.05482 & -0.0000591915 \end{bmatrix}$
$\operatorname{Aig}[g_N]$	$\begin{bmatrix} -2.9013 & -0.0832459 & 0.000341734 \end{bmatrix}$
y_L	$(-1.3886 \times 10^{-6}, 1.89154 \times 10^{-6})$
y_R	$(-1.09227 \times 10^{-6}, -2.12273 \times 10^{-6})$
$Abs[g_{\Psi}]$	$(2.36783 \times 10^{-14}, 0.834252, 0.00001)$
$Arg[g_{\Psi}]$	$(-0.0562951, -1.57111, 2.88658 \times 10^{-10})$
$Abs[g_R]$	$(2.37749 \times 10^{-8}, 1.16409, 0.000310295)$
$Arg[g_R]$	(0, 1.5708, 0)

Figure: Contribution to $(g-2)_{\mu}$ within this scotogenic model.

00000