Probing au flavour change with $\mu \rightarrow e$ Based on MA, S. Davidson, M. Gorbahn PRD 105, 096040 (2022)

> Marco Ardu LUPM Montpellier, CNRS

Planck Conference 2022

1st June 2022

Charged Lepton Flavour Violation

Leptons:

$$\ell_{\alpha} = \begin{pmatrix} \nu_{\alpha L} \\ \alpha_L \end{pmatrix}, \alpha_R \quad \text{with } \alpha = e, \mu, \tau$$
 (1)

The Standard Model with $m_{\nu_{lpha}} = 0$ has exact $U(1)_{B/3-L_{lpha}}$

...but Neutrino masses break all three symmetries.

Charged Lepton Flavour Violation (CLFV) \equiv short-range interaction between the charged leptons that violates LF.

CLFV assuming Dirac neutrino masses is small $Br(\mu o e\gamma) \simeq G_F^2 m_
u^4 \sim 10^{-50}$

Smoking gun signal of New Physics

Marco Ardu (LUPM, CNRS)

Experimental searches

The experimental sensitivities on LFV processes are impressive and will improve

$$\begin{split} Br(\mu \to e\gamma) &< 4.2 \times 10^{-13} \to 6 \times 10^{-14} \text{ A. M. Baldini et al., arXiv:1801.04688} \\ Br(\mu \to \bar{e}ee) &< 1.0 \times 10^{-12} \to 10^{-16} \text{ A. Blondel et al., arXiv:1301.6113} \\ Br(\mu A \to eA) &< 7 \times 10^{-13} \to 10^{-16} - 10^{-18} \text{ R. M. Carey et al., FERMILAB-PROPOSAL-0973} \end{split}$$

$$Br(\tau
ightarrow ar{e}ee) < 2.7 imes 10^{-8}
ightarrow 5 imes 10^{-9}$$
 E. Kou et al., arXiv:1808.10567
 $Br(\tau
ightarrow l\gamma) < 3.3 imes 10^{-8}
ightarrow \sim 10^{-9}$ B. Aubert et al., PhysRevLett.104.021802
 $Br(B_d^0
ightarrow \mu \tau) < 1.4 imes 10^{-5}$ Roel Aaij et al., PhysRevLett, 123(21):211801, 2019

Experimental searches

The experimental sensitivities on LFV processes are impressive and will improve

$$Br(\mu \to e\gamma) < 4.2 \times 10^{-13} \to 6 \times 10^{-14}$$
 A. M. Baldini et al., arXiv:1801.04688
 $Br(\mu \to \overline{e}ee) < 1.0 \times 10^{-12} \to 10^{-16}$ A. Biondel et al., arXiv:1301.6113
 $Br(\mu A \to eA) < 7 \times 10^{-13} \to 10^{-16} - 10^{-18}$ R. M. Carey et al., FERMILAB-PROPOSAL-0973

$$Br(au o ar{e}ee) < 2.7 imes 10^{-8} o 5 imes 10^{-9}$$
 E. Kou et al., arXiv:1808.10567
 $Br(au o l\gamma) < 3.3 imes 10^{-8} o \sim 10^{-9}$ B. Aubert et al., PhysRevLett.104.021802
 $Br(B_d^0 o \mu au) < 1.4 imes 10^{-5}$ Roel Aaij et al., PhysRevLett, 123(21):211801, 2019

The possibility of having very intense muon beams accounts for better sensitivities:

 $Br(au o e)Br(au o \mu) \gtrsim Br(\mu o e)$

Experimental searches

The experimental sensitivities on LFV processes are impressive and will improve

$$\begin{split} Br(\mu \to e\gamma) < 4.2 \times 10^{-13} \to 6 \times 10^{-14} \text{ A. M. Baldini et al., arXiv:1801.04688} \\ Br(\mu \to \bar{e}ee) < 1.0 \times 10^{-12} \to 10^{-16} \text{ A. Blondel et al., arXiv:1301.6113} \\ Br(\mu A \to eA) < 7 \times 10^{-13} \to 10^{-16} - 10^{-18} \text{ R. M. Carey et al., FERMILAB-PROPOSAL-0973} \end{split}$$

$$Br(au o ar{e}ee) < 2.7 imes 10^{-8} o 5 imes 10^{-9}$$
 E. Kou et al., arXiv:1808.10567
 $Br(au o l\gamma) < 3.3 imes 10^{-8} o \sim 10^{-9}$ B. Aubert et al., PhysRevLett.104.021802
 $Br(B_d^0 o \mu au) < 1.4 imes 10^{-5}$ Roel Aaij et al., PhysRevLett, 123(21):211801, 2019

The possibility of having very intense muon beams accounts for better sensitivities:

$${\it Br}(au o e){\it Br}(au o \mu) \gtrsim {\it Br}(\mu o e)$$

Suppose $\mu \leftrightarrow \tau$ and $\tau \leftrightarrow e$ happen:

 $\mu \rightarrow e$ can be radiatively generated via $\mu \rightarrow \tau \times \tau \rightarrow e$

Can $\mu \rightarrow e$ teach us something about $\tau \leftrightarrow I LFV$?

Marco Ardu (LUPM, CNRS)

Outline

 $\textcircled{1} \mu \rightarrow \tau \times \tau \rightarrow e \text{ in EFT}$

Phenomenology

Outline

 $\textcircled{1} \mu \rightarrow \tau \times \tau \rightarrow e \text{ in EFT}$

Phenomenology

Conclusion

Effective Field Theory (EFT)

We assume that New Physics responsible for LFV is heavy $\Lambda\gtrsim 4~\text{TeV}$

Effective Field Theory (EFT)

We assume that New Physics responsible for LFV is heavy $\Lambda \gtrsim 4 \text{ T}eV$

In the EFT $\mu \rightarrow \tau \times \tau \rightarrow e$ is at dimension eight: $\mu \rightarrow e$ observables are sensitive to some $1/\Lambda^4$ contributions MA, S. Davidson, JHEP 08 2021, 2 (2021)

Dimension eight amplitudes might be subleading contributions of $\mu \rightarrow \tau \times \tau \rightarrow e$

Heavy Z' with $\mu \leftrightarrow \tau$ and $e \leftrightarrow \tau$ couplings

Boxes match onto dimension six

 $K - \overline{K}$ mixing:

In SM the charm and up dimension six contributions cancel (GIM)

The EFT reproduces the log-enhanced $\sim G_F^2 m_c^2$ amplitude

イロト イヨト イヨト イヨ

Including the top, GIM applies due to CKM unitarity

The dimension six $G_F^2 m_t^2$ is suppressed by small mixing with the third generation.

イロト イヨト イヨト

Including the top, GIM applies due to CKM unitarity

The dimension six $G_F^2 m_t^2$ is suppressed by small mixing with the third generation.

Dimension six $\mu\to\tau\times\tau\to e$ matching is model dependent; we calculate model independent dimension eight contributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

The EFT calculation

Divergent diagrams with two dimension six $\mu \rightarrow \tau \times \tau \rightarrow e$ insertion renormalize dimension eight $\mu \rightarrow e$ operators

- We only calculate contributions that are (estimated to be) within exp. sensitivities.
- We compute the $(dim6)^2$ one-loop running in the Standard Model EFT $(E > M_W)$
- SMEFT operator list is reduced using the Equations of Motions (EoM) EoM get corrections from dimension six operators: need to take it into account when renormalizing EFT up to $1/\Lambda^4$ order.

The EFT calculation

- The dimension eight operators generated in the $\Lambda \rightarrow M_W$ running are matched onto low energy contact interactions at $E = M_W$ (EFT with W, Z, h, t integrated out).
- Tree-level matching contributions from two dimension six operator insertion when $\langle H \rangle = v = 174$ GeV:

Match onto scalar and tensor $\mu e \tau \tau$ operators

• Low energy operators run from M_W to $E_{exp} \longrightarrow$ experiments constrain $C_{\tau\mu}^{[6]} C_{e\tau}^{[6]} ((dim6)^2 \text{ running below } M_W$ is negligible).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

Outline

 $\textcircled{1} \mu \rightarrow \tau \times \tau \rightarrow e \text{ in EFT}$

Conclusion

 $\tau\leftrightarrow \textit{I}$ searches, where $\textit{I}=\textit{e},\mu,$ can probe the region outside the ellipse

while $\mu \rightarrow e$ is sensitive to the parameter space above the hyperbola

 $\left| C^{[6]\tau\mu} C^{[6]e\tau} \right| \lesssim B_{\mu\leftrightarrow e}$

- Dashed hyperbola: $\frac{B_{\mu\leftrightarrow e}}{B_{\tau\leftrightarrow e}B_{\tau\leftrightarrow \mu}} = \frac{1}{2}$
- Thick hyperbola: $\frac{B_{\mu\leftrightarrow e}}{B_{\tau\leftrightarrow e}B_{\tau\leftrightarrow \mu}} < \frac{1}{2}$

Marco Ardu (LUPM, CNRS)

1st June 2022 13 / 18

Consider $\mathcal{O}_{eq}^{\tau\mu13} = 2\sqrt{2}G_F(\bar{\tau}\gamma\mu)(\bar{q}_1\gamma q_3)$ and $\mathcal{O}_{\ell equ}^{(3)e\tau31} = 2\sqrt{2}G_F(\bar{\ell}_e\sigma\tau)(\bar{q}_3\sigma u)$

The diagram generates $(\overline{e}P_R\mu)(\overline{u}P_Ru)$, contributing to $\mu \to e$ conversion in nuclei

$${\it Br}(\mu A o eA) < 7 imes 10^{-13} o C_{eq}^{ au \mu 13} imes C_{\ell equ}^{(3)e au 31} \lesssim B_{\mu \leftrightarrow e} = 1.5 imes 10^{-8}$$

B decays are also sensitive to the above operators

$$Br(B_d^0 \to \mu^{\pm} \tau^{\mp}) < 1.4 \times 10^{-5} \to C_{eq}^{\tau \mu 13} \lesssim B_{\tau \leftrightarrow \mu} = 1.5 \times 10^{-3}$$
$$Br(B^+ \to \overline{\tau}\nu) = (1.09 \pm 0.24) \times 10^{-4} \to C_{\ell equ}^{(3)e\tau 31} \lesssim B_{\tau \leftrightarrow e} = 1.8 \times 10^{-3}$$

$$rac{B_{\mu\leftrightarrow e}}{(B_{ au\leftrightarrow e}B_{ au\leftrightarrow \mu})}\sim (5 imes 10^{-3})$$

With future experimental sensitivities this ratio could become \sim 10 times smaller

Marco Ardu (LUPM, CNRS)

Same diagram with external charm

generates a tensor $(\overline{e}\sigma P_R \mu)(\overline{c}\sigma P_R c)$. Tensors with heavy quarks efficiently mix with the dipole, contributing to $\mu \to e\gamma$.

Among the popular B anomalies, the ratio

$$R_{D^*\tau/I} \equiv \frac{Br(B \to D^*\tau\bar{\nu})}{Br(B \to D^*I\bar{\nu})}$$

is observed to be above the SM value $(\mathit{R}^{exp}_{D^{*}\tau/l}-\mathit{R}^{SM}_{D^{*}\tau/l})=0.052\pm0.018$

The LFV tensor can enhance the rate of the numerator and can fit the difference

With a detection of $\tau \leftrightarrow e$, our results can give theoretical guidance on where to search (or not) for $\tau \leftrightarrow \mu$.

イロト イヨト イヨト イヨ

Outline

 $\textcircled{1} \mu \rightarrow \tau \times \tau \rightarrow e \text{ in EFT}$

Phenomenology

- $\mu
 ightarrow e$ impressive experimental improvement is expected in the near future
- The sensitivity on $\mu \rightarrow \tau \times \tau \rightarrow e$ can compete with direct $\tau \rightarrow I$ LFV searches and complementary probe τ flavour changing interactions
- We calculated a subset of unknown RGEs for dimension eight operators in SMEFT
- Our result can relate μ ↔ e, τ ↔ e and τ ↔ μ: with a detected τ ↔ e (τ ↔ μ) signal, non-observation of μ ↔ e can suggest the size of some τ ↔ μ (τ ↔ e) interactions.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

THANK YOU!

BACK-UP

Running diagrams

イロト イヨト イヨト イヨ

(a)

(b)

Two operators $\mathcal{O}_1,\mathcal{O}_2$ that differ by an Equation of Motion (EOM) vanishing operator are physically equivalent

$$\mathcal{O}_1 - \mathcal{O}_2 = \mathcal{O}_{EOM} \propto rac{\delta S}{\delta \phi}$$

because \mathcal{O}_{EOM} has vanishing S-matrix elements. For instance, $i(\bar{\ell}_{\mu}\not{D}\ell_{\tau})(H^{\dagger}H)$ and $y_{\tau}(\bar{\ell}_{\mu}He_{\tau})(H^{\dagger}H)$ are on-shell equivalent

$$i(\bar{\ell}_{\mu}\not\!\!D\ell_{\tau})(H^{\dagger}H) \rightarrow [i(\bar{\ell}_{\mu}\not\!D\ell_{\tau})(H^{\dagger}H) - y_{\tau}(\bar{\ell}_{\mu}He_{\tau})(H^{\dagger}H)] + y_{\tau}(\bar{\ell}_{\mu}He_{\tau})(H^{\dagger}H)$$

We can understand it diagrammatically:

Suppose that the only dimension six present is $\mathcal{O}_{\ell edq}^{e\tau nm} = (\bar{\ell}_{\tau} e_e)(\bar{d}_n q_m)$. The operators corrects the EOM, such that

$$\begin{split} i(\bar{\ell}_{\mu}\not{D}\ell_{\tau})(H^{\dagger}H) \rightarrow \left[i(\bar{\ell}_{\mu}\not{D}\ell_{\tau})(H^{\dagger}H) - y_{\tau}(\bar{\ell}_{\mu}He_{\tau})(H^{\dagger}H) + \frac{C_{\ell edq}^{\tau enm}}{\Lambda_{\rm NP}^2}(\bar{\ell}_{\mu}e_{e})(\bar{d}_{n}q_{m})(H^{\dagger}H)\right] \\ + y_{\tau}(\bar{\ell}_{\mu}He_{\tau})(H^{\dagger}H) - \frac{C_{\ell edq}^{\tau enm}}{\Lambda_{\rm NP}^2}(\bar{\ell}_{\mu}e_{e})(\bar{d}_{n}q_{m})(H^{\dagger}H) \end{split}$$

Diagrammatically:

If a redundant operator is generated via loops, in general:

$$\frac{A}{\Lambda_{\rm NP}^2\epsilon} \left(\mathcal{O}^{[6]} + \frac{\mathcal{O}^{[8]}}{\Lambda_{\rm NP}^2} - \mathcal{O}_{EOM} \right)$$

where $\mathcal{O}^{[8]}$ is due to the dimension six correction to the EOM.

Marco Ardu (LUPM, CNRS)

• • • • • • • • • • • •