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e Motivation: Light sterile neutrinos, neutrino electromagnetic
properties.

e The sterile neutrino flux at Earth.
e Constraints from XENONIT and complementary searches.

¢ A model with enhanced sterile neutrino electromagnetic
multipoles.

e Conclusions.
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Light sterile neutrinos

e Sterile neutrinos constitute a simple extension of the SM
introducing an appealing left-right symmetry.

¢ In some seesaw models with several right handed neutrino fields,
not all of them need to be very heavy.
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Light sterile neutrinos

e Sterile neutrinos constitute a simple extension of the SM
introducing an appealing left-right symmetry.

¢ In some seesaw models with several right handed neutrino fields,
not all of them need to be very heavy.

Giunti, Lasserre, 19’ Boyarsky, Drewes, Lasserre, Mertens,
i Ruchayskiy, 18’
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e Some short baseline oscillation and reactor experiments seem to
favour a 3+1 scheme with an
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e keV sterile neutrinos could account for the dark matter
abundance and explain anomalous X-ray observations. 3/17



Neutrino electromagnetic interactions

Effective interaction vertex between a photon and a neutrino:

M (@) = V- aud]aP) [fQi(qz) +fAi(q2)q275] —io-,qu[ Tl a?) +if£i(q2)y5]

For ultrarelativistic neutrinos

/ Q (0)=esi  charge (ys — —1), the charge and anapole

Afli(o) = puy; magnetic moment form factors have a similar
i h logy:
f7'(0) = €f;  electric moment phenomenociogy
. d 2
fAl(O) =ay; anapole moment (r2y=6 % 20 = —6a

cei =i =¢€;=0,e;=0

Dirac: ¢; =0
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Laboratory constraints on the moments of neutrinos

PDG, 21’

Electric charge:
(ey,en) < (10712, -y x e

Magnetic moment:
(Kyvs tvns pvn) < (107110719, =) x g

. . . . ~19 v
while the for active neutrinos is u ~ 107" 5 i
Anapole moment:

(avw ayn, aNN) < (10_33, 10_32, 10_32) X cm?

while the for active neutrinos is a ~ 1073* cm?

The electromagnetic properties of sterile neutrinos are less
constrained than for active neutrinos.
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The solar sterile neutrino flux

Amyy ~ keV

e The flux of solar is given by the
conversion probability of an v, into a N on its way to Earth.

e keV-scale sterile neutrinos are produced directly in the Sun.
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The solar sterile neutrino flux

Flux [em? s MeV']

e The largest flux of neutrinos (v.) at Earth comes from the
proton-proton

o for pp neutrinos do not have an impact on the flux.

. . s ope ,
Borexino, 14’ Giunti, Li, 09
108 g 012 ,

1075 pp[£0.6%)

10 ) i 10 0.00 L

Neutrino Energy [MeV] 10 ml;(Me\l)

For both eV and keV masses, the flux scales as 62
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Recoil rate of sterile neutrino scatterings with electrons

my =1eV Diagonal magnetic iy = 1055 x 614
Vi v Transition magnetic iy = 10" 0
—— Diagonal anapole ay = 10~%cm? x 0
\ / -~ Transition anapole ay = 10-3lem?
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e Anapole: Flat at low energies, and same energy dependence as
the weak scatterings of active neutrinos in the SM.

. : Diverges at low energies, and different energy
dependence than known SM backgrounds.
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A constraint on the diagonal anapole moment

90% C.L. upper limit on A of the sterile neutrino
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e The constraint from XENONIT on the diagonal anapole moment
is far from the SM prediction.
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A constraint on the diagonal anapole moment

0® 90% C.L. upper limit on A of the sterile neutrino
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10732

apole Moment

SN1987 6y = 0.1

= 107

Diagonal An

—— SM prediction

XENONIT, #y; = 0.1

1073 1072 107! 10° 10! 10%
Sterile neutrino mass my [keV]
e The constraint from XENONIT on the diagonal anapole moment
is far from the SM prediction.

e It is close to astrophysical and collider constraints.

Chu, Pradler, Semmelrock, 18’
Raffelt, Zhou, 11’
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A constraint on the diagonal anapole moment

- 90% C.L. upper limit on A of the sterile neutrino
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Are there models where the expected values of the sterile neutrino
moments become testable?
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A model with enhanced sterile neutrino moments

Sterile neutrinos couple to a new scalar and fermion charged under a
dark U(1), giving rise to one-loop diagrams generating the
electromagnetic moments.

L =N[CLPL+CRPR] S*f+hC

Some benchmark values: N N
ms ~ 1 MeV \\_/
my ~ 100 MeV | %
cr,cr ~ 1 &
e~107° .
For an , the new particles in the dark sector

are poorly constrained.
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90% C.L. upper limit on A of the sterile neutrino
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Are there models where the expected values of the sterile neutrino
moments become testable?

v Yes, and we have provided an example of these.
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Constraints and predictions on the magnetic moment

10-® 90% C.L. upper limit on g of the sterile neutrino 100 90% C.L. upper limit on s, of the sterile neutrino
ST
= =
Z =1
& 2
=10
Z
w0
—— SM prediction
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0 101 >
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Sterile neutrino mass my [keV] Sterile neutrino mass my [keV]

e The constraint from XENONIT on the off-diagonal magnetic
moment is only ~ 1 order of magnitude weaker than the one from

e For allowed values of our model parameters, the predicted
magnetic moments will be testable in the near future
(XENONNT, SENSEL...).
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Conclusions

¢ In minimal extensions of the Standard Model with light sterile
neutrinos, these are expected to carry electromagnetic moments,
which are different for Majorana and Dirac particles.

e The electromagnetic moments of light sterile neutrinos are less
constrained than those of active neutrinos, and their predicted
values are model dependent.

e We have derived novel constraints on the diagonal anapole and
magnetic moments of solar sterile neutrinos with XENONI1T
electron recoil data.

e We have proposed a model where the electromagnetic moments
of the light sterile neutrinos will be testable in the near future.
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Thanks for your attention

gonzalo.herrera@tum.de
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Back-up slides
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Constraints from different experiments

Diagonal Anapole Moment [em?

90% C.L. upper limit on A of the sterile neutrino
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Cross section for the magnetic and anapole interactions

(T3, = Tm2 +me (1% +2B2 = 2TE, - 2m3,)

doana 2
=aA (H
dr (E5 —m3,)
2 2 2 2 2
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The recoil rate formula

Tm’IX

Em(lX d¢ do-
Trec Trec,T
e / B el ) G (T ) (6)

—Nol‘/
rec

mm

W T 1 5
ED = 24 ST+ dm T+ 23, 7)
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1-loop diagrams for the magnetic and anapole moment

] , A ,
Lisg = SNTHNE}, and  Li = SNy ysNO“F. (8)
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eV sterile neutrinos

¢ In some seesaw models with several right handed neutrino fields,
not all of them need to be very heavy

e The phenomenology of eV sterile neutrinos assumes that the
heavy right handed neutrinos have negligible mixing with the
lighter neutrinos

MiniBooNE reports an excess of
4.80 favouring a 3+1 scheme with
a ~ 1 eV sterile neutrino, and a
6.00 significance when combined
with LSND data.
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e The non-observation of v, disappearance in other experiments
sets strong constraints on Amﬁ1 ~ 1eV?

o Global fits of appearance and disappearance data indicate that
some experiment is wrong in their sterile neutrino interpretation.

e Cosmological data disfavor sterile neutrino masses at the eV scale
and their full thermalization through active-sterile oscillations

Giunti, Lasserre, 19’ Gariazzo, 16’
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SBL anomalies could be resolved in a few years: MicroBooNE, NEOS, IceCube,
Katrin...
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Cosmological constraints on the sterile neutrino magnetic

moment

Brdar, Greljo, Kopp, Opferkuch, 21’
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N — v + v injects extra electromagnetic radiation.

N contributes to the expansion rate of the universe, increasing N ¢ ¢
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Other models with sterile neutrino scatterings

o Sterile neutrinos can couple to the SM gauge bosons via
right-handed CC and NC interactions:
L =Gr(gw/N2) IRy i)W~ + NC

e For eV sterile neutrinos, the strongest laboratory constraint
comes from W decay width: Gg < 6 x 1073
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