Constraining the electromagnetic multipoles of light sterile neutrinos

Planck 2022

Gonzalo Herrera gonzalo.herrera@tum.de

Technische Universität München Max Planck Institute for Physics

In collaboration with A.Ibarra and M.Reichard

SDO/AIA 171 2015-04-20 14:56:24 UT

Outline

- **Motivation:** Light sterile neutrinos, neutrino electromagnetic properties.
- The sterile neutrino **flux** at Earth.
- Constraints from XENON1T and complementary searches.
- A **model** with enhanced sterile neutrino electromagnetic multipoles.
- Conclusions.

Light sterile neutrinos

- Sterile neutrinos constitute a simple extension of the SM introducing an appealing left-right symmetry.
- In some seesaw models with several right handed neutrino fields, not all of them need to be very heavy.

Light sterile neutrinos

- Sterile neutrinos constitute a simple extension of the SM introducing an appealing left-right symmetry.
- In some seesaw models with several right handed neutrino fields, not all of them need to be very heavy.

- Some short baseline oscillation and reactor experiments seem to favour a 3+1 scheme with an eV sterile neutrino.
- keV sterile neutrinos could account for the dark matter abundance and explain anomalous X-ray observations.

Neutrino electromagnetic interactions

Effective interaction vertex between a photon and a neutrino:

$$\mathcal{M}_{\mu}^{i \to f}(q) = (\gamma_{\mu} - q_{\mu} q/q^2) \left[f_Q^{fi}(q^2) + f_A^{fi}(q^2) q^2 \gamma_5 \right] - i \sigma_{\mu\nu} q^{\nu} \left[f_M^{fi}(q^2) + i f_E^{fi}(q^2) \gamma_5 \right]$$

$$\begin{split} f_Q^{fi}(0) &= e_{fi} \quad \text{charge} \\ f_M^{fi}(0) &= \mu_{fi} \quad \text{magnetic moment} \\ f_E^{fi}(0) &= \epsilon_{fi} \quad \text{electric moment} \\ f_A^{fi}(0) &= a_{fi} \quad \text{anapole moment} \end{split}$$

For ultrarelativistic neutrinos $(\gamma_5 \rightarrow -1)$, the charge and anapole form factors have a similar phenomenology:

$$\left| \frac{dr_{\nu}^2}{r_{\nu}^2} \right|_{q^2 = 0} = 6 \left| \frac{df_Q(q^2)}{dq^2} \right|_{q^2 = 0} = -6a$$

Majorana:
$$e_{ii} = \mu_{ii} = \epsilon_{ii} = 0$$
, $e_{ij} = 0$
Dirac: $\epsilon_{ii} = 0$

<

4/17

Laboratory constraints on the moments of neutrinos

PDG, 21'

Electric charge: $(e_v, e_N) \leq (10^{-12}, -) \times e$

Magnetic moment: $(\mu_{\nu\nu}, \mu_{\nu N}, \mu_{NN}) \leq (10^{-11}, 10^{-10}, -) \times \mu_B$

while the predicted value for active neutrinos is $\mu \sim 10^{-19} \frac{m_{\nu}}{1 \text{ eV}} \mu_B$

Anapole moment: $(a_{\nu\nu}, a_{\nu N}, a_{NN}) \leq (10^{-33}, 10^{-32}, 10^{-32}) \times \text{cm}^2$

while the predicted value for active neutrinos is $a \sim 10^{-34} \,\mathrm{cm}^2$

The electromagnetic properties of sterile neutrinos are less constrained than for active neutrinos.

The solar sterile neutrino flux

- The flux of solar eV-scale sterile neutrinos is given by the conversion probability of an v_e into a N on its way to Earth.
- keV-scale sterile neutrinos are produced directly in the Sun.

The solar sterile neutrino flux

- The largest flux of neutrinos (v_e) at Earth comes from the proton-proton (pp) chain.
- Matter effects for pp neutrinos do not have an impact on the flux.

For both eV and keV masses, the flux scales as θ^2 .

Recoil rate of sterile neutrino scatterings with electrons

- Anapole: Flat at low energies, and same energy dependence as the weak scatterings of active neutrinos in the SM.
- Magnetic: Diverges at low energies, and different energy dependence than known SM backgrounds.

A constraint on the diagonal anapole moment

• The constraint from XENON1T on the diagonal anapole moment is far from the SM prediction.

A constraint on the diagonal anapole moment

- The constraint from XENON1T on the diagonal anapole moment is far from the **SM prediction**.
- It is close to astrophysical and collider constraints. Chu, Pradler, Semmelrock, 18' Raffelt, Zhou, 11'

A constraint on the diagonal anapole moment

Are there models where the expected values of the sterile neutrino moments become testable?

11/17

A model with enhanced sterile neutrino moments

Sterile neutrinos couple to a new scalar and fermion charged under a dark U(1), giving rise to one-loop diagrams generating the electromagnetic moments.

$$\mathcal{L} = \bar{N} \left[c_L P_L + c_R P_R \right] S^* f + \text{h.c.}$$

Some benchmark values:

 $m_S \sim 1 \text{ MeV}$ $m_f \sim 100 \text{ MeV}$ $c_L, c_R \sim 1$ $\epsilon \sim 10^{-6}$

For an ultralight hidden photon γ' , the new particles in the dark sector are poorly constrained.

Are there models where the expected values of the sterile neutrino moments become testable?

 \checkmark Yes, and we have provided an example of these.

Constraints and predictions on the magnetic moment

- The constraint from XENON1T on the off-diagonal magnetic moment is only ~ 1 order of magnitude weaker than the one from Red Giants.
- For allowed values of our model parameters, the predicted magnetic moments will be testable in the near future (XENONnT, SENSEI...).

Conclusions

- In minimal extensions of the Standard Model with light sterile neutrinos, these are expected to carry electromagnetic moments, which are different for Majorana and Dirac particles.
- The electromagnetic moments of light sterile neutrinos are less constrained than those of active neutrinos, and their predicted values are model dependent.
- We have derived novel constraints on the diagonal anapole and magnetic moments of solar sterile neutrinos with XENON1T electron recoil data.
- We have proposed a model where the electromagnetic moments of the light sterile neutrinos will be testable in the near future.

Thanks for your attention

gonzalo.herrera@tum.de

Back-up slides

Constraints from different experiments

Cross section for the magnetic and anapole interactions

$$\frac{d\sigma_{\rm ana}}{dT} = \alpha \mathcal{A}^2 \frac{\left(Tm_N^2 - Tm_e^2 + m_e(T^2 + 2E_\nu^2 - 2TE_\nu - 2m_N^2)\right)}{(E_\nu^2 - m_N^2)} \tag{1}$$

$$\frac{d\sigma_{\rm ana,tr}}{dT} = \alpha \mathcal{A}_{\rm tr}^2 \frac{\left(m_N^2 (T - 2E_\nu) - 2Tm_e^2 + m_e (4E_\nu^2 - 4TE_\nu + 2T^2 - m_N^2)\right)}{2E_\nu^2}, \quad (2)$$

$$\frac{d\sigma_{\rm mag}}{dT} = \alpha \mu^2 \frac{2m_e (E_\nu^2 - TE_\nu - m_N^2) + Tm_N^2}{2m_e T (E_\nu^2 - m_N^2)}$$
(3)

$$= \frac{\alpha \mu^2}{E_{\nu}^2 - m_N^2} \left[\frac{E_{\nu}^2}{T} - E_{\nu} + m_N^2 \left(\frac{1}{2m_e} - \frac{1}{T} \right) \right]$$
(4)

$$\frac{d\sigma_{\text{mag,tr}}}{dT} = \alpha \mu_{\text{tr}}^2 \left[\frac{1}{T} - \frac{1}{E_{\nu}} - \frac{m_N^2}{2E_{\nu}Tm_e} \left(1 - \frac{T}{2E_{\nu}} + \frac{m_e}{2E_{\nu}} \right) + \frac{m_N^4(T - m_e)}{8E_{\nu}^2 T^2 m_e^2} \right]$$
(5)

16/17

The recoil rate formula

$$\frac{dR}{dT_{rec}} = N_0 t \int_{T_{min}}^{T^{max}} dT \int_{E_{\nu}^{min}}^{E_{\nu}^{max}} dE_{\nu} \frac{d\phi}{dE_{\nu}} \frac{d\sigma}{dT} \epsilon(T_{rec}) G(T_{rec}, T) \quad (6)$$
$$E_{\nu}^{min} = \frac{T}{2} + \frac{1}{2} \sqrt{T^2 + 4m_e T + 2m_N^2}. \quad (7)$$

16/17

1-loop diagrams for the magnetic and anapole moment

$$\mathcal{L}_{\text{mag}} = \frac{\mu}{2} \bar{N} \sigma^{\mu\nu} N F'_{\mu\nu} \quad \text{and} \quad \mathcal{L}_{\text{ana}} = \frac{\mathcal{A}}{2} \bar{N} \gamma^{\mu} \gamma_5 N \partial^{\nu} F'_{\mu\nu}, \quad (8)$$

eV sterile neutrinos

- In some seesaw models with several right handed neutrino fields, not all of them need to be very heavy
- The phenomenology of eV sterile neutrinos assumes that the heavy right handed neutrinos have negligible mixing with the lighter neutrinos

MiniBooNE reports an excess of 4.8σ favouring a 3+1 scheme with a ~ 1 eV sterile neutrino, and a 6.0σ significance when combined with LSND data.

Gallium and reactor anomalies also favor $\Delta m_{41}^2 \ge 1 \text{ eV}^2$

But...

- The non-observation of v_{μ} disappearance in other experiments sets strong constraints on $\Delta m_{41}^2 \sim 1 \text{eV}^2$
- Global fits of appearance and disappearance data indicate that some experiment is wrong in their sterile neutrino interpretation.
- Cosmological data disfavor sterile neutrino masses at the eV scale and their full thermalization through active-sterile oscillations

Gariazzo, 16'

SBL anomalies could be resolved in a few years: MicroBooNE, NEOS, IceCube, Katrin...

Cosmological constraints on the sterile neutrino magnetic moment

Brdar, Greljo, Kopp, Opferkuch, 21'

 $N \rightarrow v + \gamma$ injects extra electromagnetic radiation.

N contributes to the expansion rate of the universe, increasing N_{eff}

Other models with sterile neutrino scatterings

- Sterile neutrinos can couple to the SM gauge bosons via right-handed CC and NC interactions: $\mathcal{L} = G_R(g_w/\sqrt{2})(\bar{l}_R\gamma^{\rho}v_{lR})W^- + NC$
- For eV sterile neutrinos, the strongest laboratory constraint comes from W decay width: $G_R \le 6 \times 10^{-3}$

