Searches for heavy neutral leptons: beyond simplified scenarios

PLANCK 2022

Paris, May 30 - June 3, 2022

Local organizing commitee:

I. Antoniadis (LPTHE) K. Benakli (LPTHE) E. Dudas (CPHT) M. Graña (IPHT) S. Lavignac (IPHT) S. Loucatos (IRFU/APC) Y. Mambrini (IJCLAB) H. Partouche (CPHT) D. Steer (APC)

Gioacchino Piazza

IJCLab, Pôle Théorie, CNRS and Paris Saclay U.

In collab. with A. Abada, X. Marcano and P. Escribano

Planck 2022

Outline of the talk

- How to reinterpret the bounds on $|V_{\ell N}|^2$ in two cases:
 - One HNL mixing with 3 active flavors (e, μ, τ)

• Collider searches of Heavy Neutral Leptons (HNL) (1 HNL + single mixing hypothesis)

• Two HNLs interfering in the LNC/LNV processes ($W^+ \rightarrow \ell_1^+ \ell_2^\pm q\bar{q}'$)

Neutrino window to new physics

$$\theta_{12} \simeq 33^\circ \quad \theta_{23} \simeq 49^\circ \quad \theta_{13} \simeq 8^\circ$$

$$\Delta m_{12}^2 \simeq 7 \times 10^{-5} \text{ eV}^2$$
$$\Delta m_{3\ell}^2 \simeq \pm 2.5 \times 10^{-3} \text{ eV}^2$$

see [2111.03086]

New neutral fermions are common byproducts of ν mass generation.

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

Neutrino oscillations establish that at least <u>two</u> of the SM neutrinos have masses $\neq 0$

The case with <u>2 HNLs</u> is the minimal phenomenologically viable when embedding a seesaw.

HNL collider searches

3 leptons + ME

CMS [1802.02965]	LNV, LFV or LFC	$pp \to \ell_1^+ \ell_2^+ \ell_3^- + ME \ (1,2)$
ATLAS [1905.09787]	LNV, LFC	$pp \rightarrow \ell^+ \ell^+ \ell^{'-} + ME \ (\ell^0)$

2 leptons + jets

ATLAS [1506.06020]	LNV, LFC	$pp \rightarrow \ell_1^{\pm} \ell_2^{\pm} j (1,2)$
CMS [1806.10905]	LNV, LFV or LFC	$pp \rightarrow \ell^{\pm} \ell^{\pm} j (\ell =$
LHCb [2011.05263]	LNC or LNV, LFC	$pp \to \mu^+ \mu^\pm j$

Experimental searches generally assume <u>one</u> generic HNL and single mixing hypothesis $(V_{\alpha N})$

HNL collider searches

3 leptons + ME

CMS [1802.02965]	LNV, LFV or LFC	$pp \to \ell_1^+ \ell_2^+ \ell_3^- + ME \ (1,2)$
ATLAS [1905.09787]	LNV, LFC	$pp \rightarrow \ell^+ \ell^+ \ell^{\prime-} + ME \ (\ell^{\prime})$
- Simila		E de la contra de la
		See [Tastet et
ATLAS [1506.06020]	LNV, LFC	$pp \rightarrow \ell_1^{\pm} \ell_2^{\pm} j (1,2)$
CMS [1806.10905]	LNV, LFV or LFC	$pp \rightarrow \ell^{\pm} \ell^{\pm} j (\ell =$
LHCb [2011.05263]	LNC or LNV, LFC	$pp \to \mu^+ \mu^\pm j$

HNL collider searches

3 leptons + ME

CMS [1802.02965]	LNV, LFV or LFC	$pp \to \ell_1^+ \ell_2^+ \ell_3^- + ME \ (1,2,$
ATLAS [1905.09787]	LNV, LFC	$pp \rightarrow \ell^+ \ell^+ \ell^{\prime-} + ME \ (\ell^0)$

2 leptons + jets

ATLAS	LNV, LFC	$pp \rightarrow \ell^{\pm}\ell^{\pm} i (12 =$
CMS [1806.10905]	LNV, LFV or LFC	$pp \to \ell^{\pm} \ell^{\pm} j (\ell =$
LHCb [2011.05263]	LNC or LNV, LFC	$pp \to \mu^+ \mu^\pm j$

Short-lived HNL

2 leptons + jets: generic mixing pattern (1HNL)

2 leptons + jets: generic mixing pattern (1HNL)

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

-

2

$$\begin{aligned} \text{leptons + jets: generic mixing pattern (1HNL)} \\ \Gamma(W^+ \to \ell_{\alpha}^+ \ell_{\beta}^\pm q \bar{q}') &= \Gamma(W^+ \to \ell_{\alpha}^+ N) \times \text{Br}(N \to \ell_{\beta}^\pm q \bar{q}') \propto |V_{\alpha N}|^2 \underbrace{\text{Br}(N \to \ell_{\beta}^\pm q \bar{q}')}_{(N \to \ell_{\beta}^\pm q \bar{q}')} \\ \cdot \text{Single mixing } (\alpha = \beta): \Gamma_N^{\text{Sing}} &= |V_{\alpha N}|^2 \tilde{\Gamma}_N^\alpha \\ \cdot \text{Generic mixing: } \Gamma_N^{\text{Gen}} &= |V_{eN}|^2 \tilde{\Gamma}_N^e + |V_{\mu N}|^2 \tilde{\Gamma}_N^\mu + |V_{\tau N}|^2 \tilde{\Gamma}_N^\tau, \\ V &= \begin{pmatrix} \bar{V}_{PMNS} & V_{eNS} \\ - & - & - & V_{\mu N} \end{pmatrix} \\ |V_{\mu N_1}|_{\text{Gen}}^2 &= |V_{\mu N_1}|_{\text{Sing}}^2 \frac{\Gamma_N^{\text{Gen}}}{\Gamma_N^{\text{Sing}}} \end{aligned}$$

$$V = \begin{pmatrix} \tilde{V}_{PMNS} & V_{eN_1} & V_{eN_2} \\ \tilde{V}_{PMNS} & V_{\mu N_1} & V_{\mu N_2} \\ V_{\tau N_1} & V_{\tau N_2} \end{pmatrix}$$

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

8/18

2 leptons + jets: generic mixing pattern (1HNL)

Fixing (M_N, V_{tot}^2) and scanning the parameter space in the ternary plot, check which points are allowed after the rescaling of the bound.

2 leptons + jets: generic mixing pattern (1HNL)

Fixing (M_N, V_{tot}^2) , and combining the searches on $(e, \mu, e - \mu)$:

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

Planck 30/05/22

2 leptons + jets: 2 HNLs (single mixing)

2 leptons + jets: 2 HNLs (single mixing)

2 leptons + jets: 2 HNLs Interfering

Defining $V_{\ell_{\alpha}N_{j}} = |V_{\ell_{\alpha}N_{j}}| e^{i\phi_{\alpha j}}$, and assuming $|V_{\ell N_{1}}|^{2} \simeq |V_{\ell N_{2}}|^{2}$, $M_{1} \simeq M_{2} \equiv M$, $\Delta M_{12} \neq 0$, $\Gamma_{1} \simeq \Gamma_{2} \equiv \Gamma$

 $\Gamma(W^+ \to \ell_{\alpha}^+ \ell_{\beta}^\pm q \bar{q}') \big|_{N_1 \& N_2} = \Gamma(W^+ \to \ell_{\alpha}^+ \ell_{\beta}^\pm q \bar{q}') \big|_{N_1} \times 2 \mathscr{K}(y, \delta \phi^\pm)$

 $\mathscr{K}(y,\delta\phi^{\pm}) = \left(1 + \cos\delta\right)$

 $y \equiv \frac{\Delta M_{12}}{\Gamma}, \quad \delta \phi^{\pm} =$

$$\delta \phi^{\pm} \frac{1}{1+y^2} - \sin \delta \phi^{\pm} \frac{y}{1+y^2} \Big)$$

$$(\phi_{\alpha 2} - \phi_{\alpha 1}) \pm (\phi_{\beta 2} - \phi_{\beta 1}),$$

 $\delta \phi^- = 0$ for $\alpha = \beta$

2 leptons +jets: 2 HNLs (single mixing)

 $|V_{\mu N_1}|_{2N}^2 = |V_{\mu N}|_{1N}^2 / [2\mathscr{K}(y, \delta\phi)] \quad \mathscr{R}$

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

$$\mathscr{E}(y,\delta\phi^{\pm}) = \left(1 + \cos\delta\phi^{\pm}\frac{1}{1+y^2} - \sin\delta\phi^{\pm}\frac{1}{1+y^2}\right)$$

12/18

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

It is possible to relax the LNV bound. (*N*₁, *N*₂ PseudoDirac Pair -> LNV forbidden)

2 leptons +jets: 2 HNLs (single mixing)

Searches for heavy neutral leptons: beyond simplified scenarios | G. Piazza

$$y \equiv \frac{\Delta M_{12}}{\Gamma}, \ \delta \phi^{\pm} = (\phi_{\alpha 2} - \phi_{\alpha 1}) \pm (\phi_{\beta 2} - \phi_{\beta 2})$$

It is possible to relax the LNV bound. $(N_1, N_2 \text{PseudoDirac Pair} \rightarrow \text{LNV forbidden})$

> However, for y < 1 LNC bound stronger

50

Combining LNV & LNC, What is the maximum allowed value for $|V_{\mu N}|^2$?

We can maximise LNC and LNV bounds over $[y, \delta \phi]$.

How to get a conservative bound?

We can maximise LNC and LNV bounds over $[y, \delta \phi]$.

Combined bound with interferences

Identifying $|V_{\mu N}|^2_{MAX}$ for each M_N , we get:

- \bullet applied to realistic models;
- Actual bounds are model and benchmark dependent, and must be recast;
- It is crucial for experiments to perform **BOTH** LNV & LNC searches to get combined bounds.

Bounds on HNLs in the simplified scenarios are often over-constraining if naively

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Curie grant No 860881-HIDDeN

Backup

Outlook: Inferring details on Low-Scale SeeSaw

Our approximations are justified in the L-S ss

 ${\cal V}$

$$\mathscr{L}_{LS} = -m_D \bar{\nu}_R \nu_L - M \overline{\nu}_R^c \nu_s - \frac{1}{2} \mu_S \bar{\nu}_s \nu_s^c - \frac{1}{2} \mu_R \bar{\nu}_R \nu_R^c + h.c$$

$$= \begin{pmatrix} \nu_L \\ \nu_R^c \\ \nu_s^c \end{pmatrix} \qquad M_{LS} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & \mu_R & M \\ 0 & M & \mu_S \end{pmatrix} \qquad \xrightarrow{\text{in the see-saw limit}} \qquad M_{\text{light}} \approx \mu \frac{m_D^2}{M^2}$$

 N_4, N_5 almost degenerate and with opposite CP phases $\rightarrow \Delta M \ll M$, $\delta \phi_V = \pi$

LNV & LNC searches can test LowScale SS models

Degeneracy $N_4 \& N_5 : M_4 \simeq M_5$, $\Gamma_4 \simeq \Gamma_5$

 $\mathcal{O}(\mu)$

$$\begin{aligned} \overline{|M|}^{2} &= \frac{1}{16} \left[\frac{g^{3}}{2\sqrt{2}M_{W}^{2}} \right]^{2} 16 \left(p_{\ell_{2}} \cdot p_{q} \right) \left(2E_{\ell_{1}}E_{q'} + p_{\ell_{1}} \cdot p_{q'} \right) \left\{ \\ & \left| U_{\ell_{1}N_{1}} \right|^{2} \left| U_{\ell_{2}N_{1}} \right|^{2} \frac{M_{1}^{2}}{\left| p_{N}^{2} - M_{1}^{2} + i\Gamma_{1}M_{1} \right|^{2}} + \left| U_{\ell_{1}N_{2}} \right|^{2} \left| U_{\ell_{2}N_{2}} \right|^{2} \frac{M_{2}^{2}}{\left| p_{N}^{2} - M_{2}^{2} + i\Gamma_{2}M_{2} \right|^{2}} \\ & + 2 \operatorname{Re} \left[\left| U_{\ell_{1}N_{1}} \right| \left| U_{\ell_{2}N_{1}} \right| \left| U_{\ell_{2}N_{1}} \right| \left| U_{\ell_{2}N_{2}} \right| e^{i\delta\phi} \frac{M_{1}M_{2}}{\left(p_{N}^{2} - M_{1}^{2} + i\Gamma_{1}M_{1} \right) \left(p_{N}^{2} - M_{2}^{2} - i\Gamma_{2}M_{2} \right)} \right] \right\} \end{aligned}$$

$$\begin{split} \overline{|M|}^2 \simeq \left[\frac{g^3}{2\sqrt{2}M_W^2} \right]^2 \pi \left(p_{\ell_2} \cdot p_q \right) \left(2E_{\ell_1}E_{q'} + p_{\ell_1} \cdot p_{q'} \right) \delta \left(p_N^2 - M^2 \right) \frac{M}{\Gamma} \left| U_{\ell_1 N_1} \right|^2 \left| U_{\ell_2 N_1} \right|^2 \left\{ 1 + \xi^2 + 4\xi \left[2\cos\delta\phi \frac{M^2\Gamma^2}{(\Delta M^2)^2 + 4\Gamma^2 M^2} - \sin\delta\phi \frac{M\Gamma\Delta M^2}{(\Delta M^2)^2 + 4\Gamma^2 M^2} \right] \right\} \end{split}$$

with $\xi = |U_{\ell_1 N_2}| |U_{\ell_2 N_2}| / |U_{\ell_1 N_1}| |U_{\ell_2 N_1}|$

N lifetime

LHCb [2011.05263]