sterile neutrino portals to Majorana dark matter

Juan Herrero-Garcia Based on arXiv. 2203.01946 L.Coito, C.Faubel, JHG, A.Santamaria, A.Titov

30th May 2022, Paris

Planck 2022

Gen⊧

CONCENES

I- Dark matter framework

II- Effective operators and models

III- Phenomenology

IV- Conclusions

I- Dark maller Francework

Visible matter

Dark Malter 27 % Dark Energy 68 %

Zwicky 1933

Ford, Rubin 1970

Dark Maller Evidence

Gravitational lensing Bullet cluster DM Gas, X-rays

Temporal evolution of WIMPs DD

[Goodman and Witten 1985; Drukier, Freese, Spergel 1986] [Figure from Snowmass WG, 1310.8327]

Where are the WIMPs?

what if WIMPs only couple to sterile neutrinos N_R ?

N_R are well motivated by neutrino masses

 \odot DM coupled to SM via N_R : most bounds evaded

The consider Majorana DM χ , with $m_N < m_{\chi}$

Other neutrino portals [Escudero, Batell, Blennow ...]

Framework

DM stability by a Z_2 symmetry, $\chi \to -\chi$: $\mathscr{L}_4 = \mathscr{L}_{SM} - \left[\frac{1}{2}m_N\overline{N}_R^c N_R + \frac{1}{2}m_\chi\overline{\chi}_L\chi_L^c + y_\nu\overline{L}\widetilde{H}N_R + H.c.\right]$

Neutrino masses by standard seesaw:

$$m_{\nu} \simeq \frac{m_{\rm D}^2}{m_N}$$

Other options: inverse seesaw, etc.

II- Effective operators and models

Effective operators $\mathcal{O}_1 = (\overline{N_R}\chi_L)(\overline{\chi_L}N_R) = -\frac{1}{2}(\overline{N_R}\gamma_\mu N_R)(\overline{\chi_L}\gamma^\mu \chi_L),$ LNC $\mathcal{O}_2 = (\overline{N_R}\chi_L)(\overline{N_R}\chi_L) = -\frac{1}{2}(\overline{N_R}N_R^c)(\overline{\chi_L^c}\chi_L),$ LNV $\mathcal{O}_3 = (\overline{N_R^c} N_R) (\overline{\chi_L^c} \chi_L) = -\frac{1}{2} (\overline{N_R^c} \gamma_\mu \chi_L) (\overline{\chi_L^c} \gamma^\mu N_R) \,.$ LNV UV completions include new scalars

Thermal Equilibrium

- Chemical f.o. of $\chi\chi \to NN$.
 Kinetic eq. early on with SM via $\lambda_{\sigma H} |H|^2 |\sigma|^2$ for $\lambda_{\sigma H} \gtrsim 10^{-6}$.
- Kinetic eq. within the DS via $\chi N \to \chi N$.

Kinetic decoupling [Berlin 2016]

DM annihilations

$$\sigma v_{\chi\chi \to NN} = a + b \frac{v^2}{4}$$
For $m_N = 0$:

$$a = \frac{m_\chi^2}{4\pi\Lambda^4} \left[|c_2|^2 + 4|c_3|^2 + 4Re(c_2c_3) \right]$$

$$b = \frac{m_\chi^2}{12\pi\Lambda^4} \left[c_1^2 + 3|c_2|^2 + 12|c_3|^2 - 12Re(c_2c_3) \right]$$

$$D_1 \text{ gives } p \text{-wave or chirality-supp. } (m_N) \text{ contributions}$$
For $c_2 = -2c_3^* \longrightarrow p$ -wave annihilations

Relic abundance $\chi\chi \to NN$

Models

C2, gauged B - L: 2 N_R + 1 χ_L

Models

MAR	CHIN	ARKI	ALAR	JAR JAR	NR CHI	NRR		R H
	Model	c_1/Λ^2	c_2/Λ^2	c_3/Λ^2	c_4/Λ^2	TOCE ADON	c_{NH}/Λ	$V_{\chi H} / \Lambda$
enuine Genuine	A1	$\frac{ f ^2}{m_\phi^2}$	$\frac{f^2}{2m_\phi^2}$	×	self inc	X	Four	×
	Alanc L	$\frac{f^2}{m_g^2}$	×	×	×	×	×	×
	A2b#	$rac{f^2}{m_\sigma^2}$	×	×	×	×	×	×
	A_2c_{\ddagger}	$\frac{f^2}{m_{\sigma}^2}$	$-\frac{f^2\mu_\sigma^2}{2m_\sigma^4}$	×	X	×	×	×
	B1 SC	alar	$-\frac{2f^*g}{m_{\perp}^2}$	$\frac{fg}{m_{\star}^2}$	$\frac{ f ^2}{m_{\star}^2}$	$\frac{ g ^2}{m_{\perp}^2}$	$\left \begin{array}{c} f_{\mu\phi H} \\ m_{\pm}^2 \end{array} \right $	$rac{g\mu_{\phi \mathrm{E}}}{m_{\star}^2}$
	B2obal	X	$-rac{fg}{m_s^2}$	$\frac{fg}{2m_s^2}$	$\frac{f^2}{2m_s^2}$	$\frac{g^2}{2m_s^2}$	$\frac{f\lambda_{\sigma H}v_{\sigma}}{\sqrt{2}m_s^2}$	$\frac{g\lambda_{\sigma H}v_{\sigma}}{\sqrt{2}m_s^2}$
Š	Electiv	$\int \frac{2g_N g_{\chi}}{m_{Z'}^2}$	×	×	$-\frac{g_N^2}{m_{Z'}^2}$	$-\frac{g_{\chi}^2}{m_{\pi'}^2}$	×	×
NON	Cauge?	$\frac{2g'^2 Q_N^2 Q_\chi}{m_{Z'}^2}$	$-rac{fg}{m_s^2}$	$\frac{fg}{2m_s^2}$	$\frac{f^2}{2m_s^2} - \frac{\frac{g'^2 Q_N^2}{m_{Z'}^2}}{m_{Z'}^2}$	$\frac{g^2}{2m_s^2} - \frac{g'^2 Q_{\chi}^2}{m_{Z'}^2}$	$\frac{f\lambda_{\sigma H}v_{\sigma}}{\sqrt{2}m_s^2}$	$\frac{g\lambda_{\sigma H}v_{\sigma}}{\sqrt{2}m_s^2}$

16

III- Phenomenology

Genuine Non-genuine

$\mathcal{L}_{A2c} \supset -f\overline{N_R^c}N_R\phi - g\overline{\chi_L^c}\chi_L\phi + \text{H.c.}.$

19

Model A2c: $m_N = 0$ $\mathscr{L}_{A2c} \supset -f\overline{N_R}\chi_L \sigma - \frac{1}{2}m_\chi \overline{\chi_L}\chi_L^c - \frac{1}{2}\mu_\sigma^2 \sigma^2 + \text{H.c.}.$

Scotogenic-like mass. For $m_{\chi_k} \ll m_{\rho}, m_{\theta}$:

20

$$(m_N)_{ij} \approx \frac{\mu_{\sigma}^2}{16\pi^2 m_{\sigma}^2} \sum_{k=1}^{n_{\chi}} f_{ik}^* f_{jk}^* m_{\chi_k}$$
Need $n_{\chi} \ge 2$

Casas-Ibarra generalisation:

$$n_{\chi} = n_N = 1$$

$$y_{\nu} v_h m_{\sigma}$$

$$\int = 4\pi \frac{y_{\nu} v_h m_{\sigma}}{\sqrt{2 m_{\nu} m_{\chi} \mu_{\sigma}^2}}$$

Model A2c

IV- CONCLUSIONS

Conclusions

- WIMPs still one of the best motivated DM candidates.
- If coupled to SM only via N_R , they evade most limits. Connection to m_{ν} .
- Genuine models involve t-channel mediators, with new Z_2 -odd scalars, that are early on in kinetic eq. with SM.
- For Dirac ν , p-wave and light thermal DM are possible.
- For Majorana ν , m_N may be generated at 1 loop.

"WIMPs...

It is now or never... Aint gonna live forever... BACK-UP

DS Lemperature T_D [Berlin 2016]

26

Could N be long-lived enough to create a period of MD?

- For the mixings and masses of N that reproduce m_{ν} , even if N is relativistic at f.o., it decays soon (and before BBN) [Berlin 2016]
- \circ Therefore, it never dominates ρ_U .
- And there is no entropy injection after fo.