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M theory compactified on K3 gives a 7-dim. theory with 16 supercharges.
The rank of the gauge group is 19+3 and this comes from the 3-form field
expanded in terms of the 19 anti-self dual and 3 selfdual 2-forms on K3.
Membranes wrapped on the two cycles of K3 are charged under these
gauge fields and these charges span a lattice Γ19,3 which is even and
self-dual with Lorentzian signature (19, 3).

Heterotic dual of this theory is obtained by compactifying on T 3, and
combining it with the E8 × E8 one gets the charge lattice Γ19,3 which is
even and self-dual with Lorentzian signature (19, 3).



We will consider non-supersymmetric orbifolds of Heterotic string T 3

obtained by reflection on two of the three right moving directions (the
fermionic string sector) and s of the 19 left moving directions. We would
expect these models to be dual to M theory on K3 modded by Z2

involutions that acts on the membrane charge lattice in an analogous
fashion.

Such involutions have been classified by Nikulin in terms of the sublattice
I of Γ19,3 which is invariant under the involution. This classification is
given by the triples (r , a, δ) where r is the dim of of I which has signature
(r − 1, 1), the number a is defined by [I ∗/I ] = 2a and finally δ is 1 if all
the vectors in I ∗ have integer length squares and otherwise δ = 0.

We denote by N the sublattice of Γ19,3 which is orthogonal to I (and
therefore has dim. = 22-r and has signature (20− r , 2), the s defined
above is related to r via s = 20− r).



Points (r , a, δ) determining all 75 invariant lattices of signature (r − 1, 1) which are
embedded primitively in the K3 lattice Γ(19,3).



Flat Connections on T 3/Z2

Before proceeding further let us take a simple example of a freely acting
Z2 orbifold of T 3 with SU(2) flat connections.

In standard Euclidean coordinates (x1, x2, x3), we can describe the
generators of the fundamental group of T 3/Z2 as the three commuting
translations of T 3, namely, g1, g2, g3 and the generator gθ which is order
two on T 3. We take the translations to act as

gi : xi −→ xi + 1

and the fourth generator acts as

gθ : (x1, x2, x3) −→ (−x1,−x2, x3 +
1

2
)



Flat Connections on T 3/Z2

The fundamental group can be described abstractly as having four
generators subject to the relations

gigj = gjgi , ∀i , j = 1, 2, 3,

gθg1g
−1
θ = g−1

1 ,

gθg2g
−1
θ = g−1

2 ,

gθg3g
−1
θ = g3,

g2
θ = g3

A flat connection on the heterotic E8 × E8 or Spin(32)/Z2 gauge bundle is
specified by a set of four Wilson lines, one for each generator, obeying
these relations. In other words we look for homomorphisms from π1(M3)
to the gauge group. As we will see, there are different classes of solutions.



Higgs branch solutions

g1 = e iφ1σ3 , g2 = e iφ2σ3 , gθ = iσ2, g3 = −1

Note that gθ in these solutions obeys g4
θ = 1.

Clearly such solutions generalise to higher rank subgroups since we have,
up to a discrete factor, that SU(2)16 ⊂ E8 × E8 (or Spin(32)/Z2). Hence
we can embed the above solution into any of the sixteen SU(2) factors.

These solutions have a moduli space which is the moduli space of flat
SU(2)-connections on T 2. Hence the low energy field theory will contain
two light scalars, which will naturally form a complex scalar field.



Higgs branch solutions

Notice that at the origin of the moduli space,when φ1,2 = 0, there is an
SO(2) subgroup of SU(2) which commutes with the flat connection; these
are the SU(2) matrices with real entries. Therefore the 7d theory has an
enhanced SO(2) gauge symmetry at that point, broken for generic values
of the φi .

The low energy effective theory is an SO(2) gauge theory coupled to a
complex field in the fundamental representation of SO(2). The potential
for this theory arises from the reduction of SU(2) Yang-Mills on the
3-manifold. The generic vacuum expectation values for these charged
scalars which minimise the potential break SO(2) completely, leaving
behind two massless scalars without a potential. These are identified with
the φi .



Coulomb branch solutions

Another family of solutions, which is identity connected, are the following:

g1 = g2 = 1, gθ = e iφ3σ3 , g3 = g2
θ

Clearly, we can extend it to any gauge group, if one takes gθ to be any
element of the maximal torus of the full gauge group, these solutions
break the gauge symmetry down to the maximal torus generically. In this
case the low energy theory in seven dimensions will have an E8 × E8 gauge
symmetry with a real adjoint scalar field. Diagonalising the field minimises
the potential and hence we have a sixteen dimensional moduli space of
vacua with E8 × E8 unbroken at the origin.

We refer to these solutions as Coulomb branch vacua since the gauge
group is the maximal torus at generic points. Notice that, at the origin of
the Higgs branch solution above, the solution is gauge equivalent to a
particular Coulomb branch solution. Hence these two types of branches of
moduli space intersect there.



Asymmetric orbifolds of Heterotic theory on T 3

Now we do not necessarily restrict to freely acting orbifolds.

1) On the right movers, orbifold group element g acts as rotation by π on
a two dimensional plane. Thus g2 acts as −1 on the space-time fermions.
This means that actually the orbifold group becomes Z4.

2) In general we may also include some shift v in the definition of g , which
acts on the states |P > carrying lattice momentum P ∈ I as
g |P >= e2πiv .P |P >.



Asymmetric orbifolds of Heterotic theory on T 3

3) More generally, when the lattice vector P ∈ Γ19,3 has components along
both I and N directions labelled as P = (PN ,PI ) then g acts as

g |PN ,PI >= f (PN)e2πiv .PI )| − PN ,PI >

This implies that

g2|PN ,PI >= f (PN)f (−PN)e4πiv .PI )|PN ,PI >

We will assume that f (PN) satisfy, f (PN)f (−PN) = e2πiP
2
N .

4) 1-loop Modular invariance condition

2v 2 +
s

4
= Integer



Asymmetric orbifolds of Heterotic theory on T 3

5) This way, we were able get all the Nikulin points except for 2 points
(r , a, δ) = (1, 1, 1) and (2, 2, 1) because in these cases I is too small and it
does not admit v satisfying the modular invariance condition. On the M
theory side, v would imply that under the involution, membrane states
pick up some well defined phases. It will be nice to understand what forces
these phases.

6) All the remaining points can be connected to each other by moving in
the classical Higgs and Coulomb branch . On the M-theory these
transitions will be non-perturbative because it happens when a membrane
state becomes massless and acquires vev i.e. is a topology changing
transition.



Asymmetric orbifolds of Heterotic theory on T 3

7) Most of the Nikulin points do not admit spin-structure, therefore the
KK modes of 11-dim SUGRA will only give bosons. On the heterotic side
there are fermions, but they are all charged under Γ19,3. On the M-theory
side they would therefore correspond to Membrane states.

8) On the heterotic side, there are tachyons coming from the twisted
sectors. But there are regions in the moduli space where they become
massive. However quantum effective potential could drive the system to
the region where tachyons appear (JHEP 04 (2021) 026).



Thank you!


