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Outlook

Plan of the talk

1. Motivations : Era of Gravitational Waves
• Ringdown Phase of Black Hole Binaries : Possibility to see deviations from GR ?

2. Modified Gravity : Scalar-Tensor Theories
• Adding one more scalar degree of freedom in addition to gravitational modes

• Lagrangian and Disformal transformations of the metric

3. Modified Black Holes and Perturbations
• New (non-rotating) Hairy Black Hole solutions

• Perturbations and effective metric
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1. Motivations



Ringdown of Black Hole Binaries

The era of Gravitational Wave Astronomy [LIGO-Virgo]

The Ringdown phase is the simplest and fully understood in General Relativity
For a Schwarzschild Black Hole, (odd and even) perturbations described in terms of
ψ(r)Y`m(θ, ϕ)e−iωt which satisfies a Schrödinger-like equation ψ′′ + [ω2 − V (r)]ψ = 0
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Kokkotas & Schmidt, 1999

→ Similar results for a Kerr Black Hole (Teukolsky equation) 4



Ringdown : a window onto Strong Gravity

We want to test General Relativity in the strong gravity regime
→ Considering Modified Theories of Gravity

→ Predict and/or Constrain deviations from General Relativity

Problem : Most of the “nice” features of General Relativity are lost !

• Modified Gravity is not unique. What type of modifications shall we consider ?

• Black Hole solutions are no more unique ? How to find them ?

• Dynamics of perturbations more involved because of the presence of extra degrees
of freedom

−→ Here, we focus on scalar-tensor theories and develop methods to understand
systematically (extract universal features) perturbations about black holes... 5



2. Scalar-Tensor Theories



Modified Gravity and scalar-tensor theories

Beyond General Relativity : Relaxing hypothesis of Lovelock Theorem
→ Lovelock : A massless spin 2 field (with Diff-invariance) in 4 dimensions is uniquely
described by GR with a cosmological constant
→ Relaxing one hypothesis leads to a huge landscape a modified gravity theories !

Classification of most general scalar-tensor theories : DHOST theories
•  Traditional theories: 

•  Generalized theories:  
 
 
 
 
 

 
  

 
   
 
 

 

  
   

  
 
 

  
 

Higher order scalar-tensor theories 

 
 
 
 
 
 
 

 
 
 

 

  
   

  
 

 

  
 

Beyond Horndeski (GLPV) DHOST 
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Credit: D. Langlois

Rediscovered by C. Deffayet,
G. Esposito-Farese, D. Steer etc…
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Action S [gµν , φ] involves higher
derivatives ∇µ∇νφ but only one
scalar dof propaging in addition
to the tensor modes.

→ Long history with a renewal of ST theories in ’00 due to the problem of dark energy 7



A few words on Horndeski theories : the cornerstone !

Horndeski theories [rediscovered by Deffayet et al. after Nicolis et al.]

The most general S [gµν , φ] whose E.o.M. are second order

L[gµν , φ] = F (φ,X )R + P(φ,X ) + Q(φ,X )�φ+ 2FX (φµνφ
µν −�φ2) + · · ·

With X = φµφ
µ, φµ = ∇µφ and φµν = ∇µ∇νφ.

Important Properties of Horndeski theories
→ EFT for dark energy (motivated by brane cosmology scenarii) where φ is dark energy
→ Metric not uniquely defined due to disformal transformations

gµν −→ g̃µν ≡ C (φ,X )gµν + D(φ,X )φµφν .

→ Possibility of non-minimal couplings to matter : Lmat[ψ] = g̃µν∂µψ∂νψ + · · ·
8



From Horndeski to DHOST theories

Case of Quadratic DHOST Theories

The DHOST action S [gµν , φ] whose E.o.M. are not necessarily second order

L[gµν , φ] = F (φ,X )R + P(φ,X ) + Q(φ,X )�φ+
5∑

i=1

Ai (φ,X )Li

L1 = φµνφ
µν , L2 = �φ2 , L3 = φµφµνφ

ν�φ , L4 = (φµφµν)2 , L5 = (φµφµνφ
ν)2

With degeneracy conditions relating the functions Ai and F =⇒ 2 classes of theories.
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Geometric Formulation of quadratic DHOST theories

Type I are physically viable (with no gradient instabilities, nor ghosts)

• Disformally related to Horndeski theories : S [gµν , φ] = SH [g̃µν , φ]

• DHOST theories are not equivalent to Horndeski theories in the presence of matter

Geometric Formulation

→ Let Σφ be the hypersurface of constant φ (φ plays the role of time when X < 0)
→ Then, Type I theories are disformally related to the simple action

S [gµν , φ] =

∫
d4x
√−g

(
M2

P

2
4R + λ(φ,X ) 3R

)
→ 3R is the 3-dimensional Ricci scalar on Σφ. 10



3. Black Hole Perturbations



DHOST Theories as EFT of Hairy Black Holes

Evading the No-Hair Theorem [Babichev-Charmousis]

New static and spherically symmetric black holes with (for shift-symmetric theories)

ds2 = −A(r)dt2 +
1

B(r)
dr2 + C (r)dΩ2 , φ(t, r) = qt + ψ(r) .

A few analytic solutions :

• Stealth solutions with A(r) = B(r) = 1− 2M/r , C (r) = r2 and X = cst

• BCL solution with A(r) = B(r) = (1− r+/r)(1 + r−/r) and C (r) = r2

• D → 4 Gauss-Bonnet solution with

A(r) = B(r) = 1− 2M(r)

r
, M(r) =

2M
1 +

√
1 + 8αM/r3

, C (r) = r2
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Dynamics of Linear Perturbations

Modified Einstein equations at linear order
gµν = gµν + hµν , φ = φ+ δφ

• Axial perturbations : δφ = 0 while haxialµν depend on χ = ψ(r)e−iωtY`m(θ, ϕ)

−d2ψ

dr2 + V (r)ψ =
ω2

c(r)2ψ

• Polar perturbations : δφ and hpolarµν are coupled with no explicit decoupling

Effective metric of axial perturbations

Dynamics of haxialµν about gµν in DHOST are equivalent to those in GR with g̃µν

g̃µν∇̃µ∇̃νψ −m2
effψ = 0 .
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On the effective metric of axial perturbations

Physical interpretation : coupling between the metric and the scalar field

→ (Minimally coupled) photons and Gravitons do not see the same space-time
→ Photons are sensitive to the background metric gµν while gravitons evolve in g̃µν

→ Consequence of the interactions between gravitons and the scalar field (as if
gravitons were evolving in a medium)

Disformal transformations

In quadratic DHOST theories, g̃µν is disformally related to gµν by

g̃µν =
√

F (F − XA1)

(
gµν +

A1

F − XA1
φµ φν

)
Where the functions are evaluated on the background solution.
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Causal structures of the background and effective metrics

Examples of effective metrics

The effective metric can be very different from the background metric

• Stealth solutions : g̃µν is still a black hole with a different horizon

Rs = 2GM/c2
γ , Rg = 2GM/c2

g , cg < cγ

• BCL solution : g̃µν is a black hole with the same horizon

• D → 4 Gauss-Bonnet solution : g̃µν is a naked singularity

=⇒ Eventual strong physical pathologies and/or instabilities.
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Case of the stealth solution : causal structures are compatible

No instabilities between the two horizons following 1803.11444 [Babichev et al] 16



4. Conclusion



Deviations from GR in the Strong Gravity regime : background/perturbations

DHOST Theories as EFT of gravity in the Strong Gravity regime

• Background solutions : Hairy Black Holes or Exotic compact objects

• Axial perturbations : effective metric different from background metric

• Polar perturbations : interactions between the graviton and the scalar
→ not easy to handle and to decouple
→ needs new techniques to study the coupled dynamics : asymptotic analysis

Going further....

B Compute Quasi-Normal Modes and Deviations from General Relativity

B Constrain theories from the systematic study of pathologies and instabilities
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