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Frontiers In dark matter searches

Heavy DM

Particles with m = TeV coupled to SM via the Weak or other
Interactions not constrained by collider experiments

— existing and upcoming telescopes observing multi-TeV sky with
Increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

Light DM

Particles with m < few GeV, possibly coupled to SM via a portal
Interaction, not constrained by older direct detection experiments

- development of new generation of direct detection experiments
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Particles with m = TeV coupled to SM via the Weak or other
Interactions not constrained by collider experiments

- existing and upcoming telescopes observing multi-TeV sky with
Increasing sensitivity, e.g. HESS, IceCube, CTA, Antares
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Long-range interactions

If dark matter is very heavy, then:
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Long-range interactions

If dark matter is very heavy, then:

i | 1 1
A ~ ) < ~ Interaction range
HUrel M M mediator

p: reduced mass (Mmpy/2)

Relevant for various models

» Self-interacting DM
« WIMP DM with mg,, > few TeV.

« WIMP DM with mg,, <TeV,
In scenarios of DM co-annihilation with coloured partners.

+ other models with dark forces




What'’s different about
long-range interactions?
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Unstable bound states
= extra annihilation channel

* Freeze-out von Harling, Petraki 1407.7874
* Indirect detection Pospelov, Ritz 0810.5167

March-Russel, West 0812.0559
* Novel |OW-energy Kusenko, Pearce 1303.7294

indirect detection signals

- COI“derS Shepherd, Tait, Zaharijas 0901.2125

| Stable bound states
(particularly of asymmetric DM)

* Elastic scattering

* Novel low-energy Kusenko, Pearce 1303.7294
Indirect detection signals

° BIaCk hOIeS Via Flores, Kusenko 2008.12456
dissipation
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Freeze-out with bound states

* Dark U(1) sector
* Neutralino-squark coannihilation
* The role of the Higgs
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Dark U(1) model: Dirac DM X,X coupled to 7y,
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Direct annihilation
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Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to 7y,
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Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to 7y,
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Neutralino In SUSY models
Squark-neutralino co-annihilation scenarios

. . D
Degenerate spectrum - soft jets — evade LHC constraints

Large stop-Higgs coupling reproduces measured Higgs mass
and brings the lightest stop close in mass with the LSP

= DM density determined by “effective” Boltzmann equation

Ntot =— Ny gp -+ Nyisp
eff

) LSP 2 LSP—-NLSP 2
o-ann T [nLSp Jann _I_ nNLSp Nysp MnLsp o-ann ]/ntot

Scenario probed in colliders.
Important to compute DM density accurately!
—~ QCD corrections
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Bound-state formation vs Annihilation

strong coupling o _~0.1
o, = 141 a2/ (27M?)
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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DM coannihilation with scalar colour triplet

MSSM-inspired toy model
The effect of the Higgs-mediated potential

80
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The Higgs as a light mediator

e Sommerfeld enhancement of direct annihilation
* Binding of bound states

Harz, KP: 1711.03552

Harz, KP: 1901.10030
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The Higgs as a light mediator

* Sommerfeld enhancement of direct annihilation Harz, KP: 1711.03552
* Binding of bound states Harz, KP: 1901.10030

é i i i ..
* Formation of bound states via Higgs (doublet) emission ?

Capture via emission of neutral scalar suppressed, March-Russel, West 0812.0559

KP, Postma, Wiechers: 1505.00109

due to selection rules: quadruple transitions An, Wise, Zhang: 1606.02305
KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode]

very very rapid: monopole transitions ! gg@g\?;f;iga;gg;;ggggg4311

Oncala, KP: 2101.08666
Oncala, KP: 2101.08667

Sudden change in effective Hamiltonian precipitates transitions.
Akin to atomic transitions precipitated by 3 decay of nucleus.

22
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Renormalisable WIMP models with coupling to the Higgs

In some prototypical WIMP models,
DM is the lightest linear combination of the neutral components of
SU(2) multiplets that couple to the Higgs

0L D —anHXn+1 + h.c.

Includes many SUSY scenarios,
e.g. Wino-Higgsino, coloured coannihition

If m > 5 TeV, DM freeze-out begins before electroweak phase transition.

= Bound-state formation via Higgs-doublet emission!

Change in potential
= monopole transition!
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Renormalisable WIMP models with coupling to the Higgs

Singlet-Doublet coupled to the Higgs: L>-yDH S
m, = m, - D and S co-annihilate.
Freeze-out begins before the EWPT if m_, > 5TeV
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Many studies of bound-state effects on DM freeze-out

In this conference

 “Closing the window on WIMP dark matter models”,
Salvatore BOTTARO (Monday 30/05)

 “Sommerfeld Effect and Bound State Formation in Simplified
Dark Matter Models”, Emanuele COPELLO (Wednesday 01/06)
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Is it random that non-perturbative effects arise
In all these models at multi-TeV?

Or Is there a model-independent way
to understand and predict it?

If so, what else can we learn from It?
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Partial-wave unitarity limit

S=1+:T
—

S'Ss =1 —i(T —TH =TT

Project on a partial wave and
insert complete set of states on RHS

U

0 o T2+1) non—a W(20+1) u=moy/z 4W(26+1)

inel = 2 2.2 2 2
kcm H vrel MDMvrel

[Griest, Kamionkowski (1990); Hui (2001)]

Physical meaning:
saturation of probability for inelastic scattering
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Partial-wave unitarity limit

In hon-relativistic regime

(£) (£)
O-illel vrel g O.uniUI‘EI

47(2€ + 1)

MgMUrel

Implies upper bound on the mass of thermal-relic DM
Griest, Kamionkowski (1990)

47

OannVUrel = 2.2 X 10_26 Cms/s g ——
MDM’Ure]

(02 )2 = (6T /Mpy)V/? T3 0.49

Mpwm /T ~ 25

117 TeV, self-conjugate DM

= Muni — .
{ 83 TeV, non-self-conjugate DM

- Assumes contact-type D
a interactions, ov,, = constant
S |

~—* Considers only s-wave\ 4
\ annihilation

| 4
_C» o
(’/\"\ -
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Partial-wave unitarity limit

/ O# In non-relativistic regime
v ©) S 4 (2L 4 Dy
< -
What o-lnelvre ~ unlvre
interactions C @

can realise
the unitarity limit?

Long-range interactions
imply bound states,
which may form by

Parametric dependence
on mass and velocity implies

that hitt or

o . can be approached Igher partial waves

or attained onlv b of the scattering state
y oy that contribute at the

long-range interactions
same order.

Baldes, KP: 1703.00478
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Conclusions

Bound states impel complete reconsideration of thermal decoupling at
/ above the TeV scale: emergence of a new type of inelasticity

Unitarity limit can be approached / realised only by long-range interactions
= bound states play very important role! Baldes, KP: 1703.00478

There is no unitarity limit on the mass of thermal relic DM!

Experimental implications:
— DM heavier than anticipated: multi-TeV probes very important.

— Indirect detection:

Enhanced rates due to BSF
Novel signals: low-energy radiation emitted in BSF
Indirect detection of asymmetric DM

— Colliders: improved detection prospects due increased mass gap in
coannihilation scenarios

Effects not limited to the thermal-relic scenario...
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