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Frontiers in dark matter searches

● Heavy DM

Particles with m ≳ TeV coupled to SM via the Weak or other 
interactions not constrained by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with 
increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

● Light DM

Particles with m  few GeV, possibly coupled to SM via a portal ≲ few GeV, possibly coupled to SM via a portal 
interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments
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Frontiers in dark matter searches

● Heavy DM

Particles with m ≳ TeV coupled to SM via the Weak or other 
interactions not constrained by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with 
increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

● Light DM

Particles with m  few GeV, possibly coupled to SM via a portal ≲ few GeV, possibly coupled to SM via a portal 
interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments

● Simple thermal-relic WIMP models live in the (multi-)TeV scale.
● Thermal-relic DM can be as heavy as few  100 TeV.⨯ 100 TeV.

How heavy can thermal-relic DM be, and  
what are the underlying dynamics of heavy (  TeV)≳ TeV)  

thermal-relic DM?
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Long-range interactions

If dark matter is very heavy, then:
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Long-range interactions

If dark matter is very heavy, then:

● Self-interacting DM

● WIMP DM with  mDM  > few TeV. 

● WIMP DM with  mDM  < TeV, 
in scenarios of DM co-annihilation with coloured partners.

Relevant for various models

+ other models with dark forces
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What’s different about 
long-range interactions? 
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Unstable bound states
 ⇒ extra annihilation channel

 Freeze-out   von Harling, Petraki 1407.7874

 Indirect detection         Pospelov, Ritz 0810.5167
               March-Russel, West 0812.0559

 Novel low-energy           Kusenko, Pearce 1303.7294

indirect detection signals

 Colliders         Shepherd, Tait, Zaharijas 0901.2125

Stable bound states 
(particularly of asymmetric DM)

 Elastic scattering

 Novel low-energy           Kusenko, Pearce 1303.7294

indirect detection signals

 Black holes via     Flores, Kusenko 2008.12456

dissipation           
      

Alex Kusenko’s talk

Bound 
states

Distorts wavefunctions of free particles pairs
  ⇒ affects all cross-sections 
  ⇒ freeze-out, indirect detection, DM self-scatteringSommerfeld
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Freeze-out with bound states
● Dark U(1) sector
● Neutralino-squark coannihilation
● The role of the Higgs 
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Dark U(1) model: Dirac DM X,X coupled to γ
D
 

                  von Harling, KP: 1407.7874
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Long-range effects indeed 
become at m

DM
 ≳ few TeV.

Verifies expectation from
unitarity arguments!

Dominant annihilation 
mode: s-wave.

Dominant BSF 
mode: p-wave

Same order! 

Higher partial waves 
Important / dominant 
in multi-TeV regime.

DM may be even heavier!

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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Neutralino in SUSY models
Squark-neutralino co-annihilation scenarios

● Degenerate spectrum → soft jets → evade LHC constraints

● Large stop-Higgs coupling reproduces measured Higgs mass 
and brings the lightest stop close in mass with the LSP 

 ⇒ DM density determined by “effective” Boltzmann equation

Scenario probed in colliders.
Important to compute DM density accurately!

→  QCD corrections
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Bound-state formation   vs   Annihilation

BSF can exceed Annihilation
by more than 

an order of magnitude!

strong coupling   α
s
 ~ 0.1

σ
0
 = 14π α

s
2 / (27Μ2)

α
s
 / v

rel 

σ
 v

re
l  

/  
σ

0

Harz, KP: 1805.01200

DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Why is this 
important?

Effect on relic density:
much much larger than 
obs uncertainty in Ω

DM
 

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Not the 
final picture!
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Harz and KP: 1711.03552, 1901.10030
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Neutralino mass [TeV]

Squark-antisquark-Higgs coupling

Large αh  
● reproduces measured Higgs mass
● brings lightest stop close in mass with LSP 

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

The effect of the Higgs-mediated potential

Not the 
final picture!
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● Sommerfeld enhancement of direct annihilation
● Binding of bound states

The Higgs as a light mediator

Harz, KP: 1711.03552 

 
Harz, KP: 1901.10030
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● Formation of bound states via Higgs (doublet) emission ?

Capture via emission of neutral scalar suppressed,
due to selection rules: quadruple transitions

Capture via emission of charged scalar [or its Goldstone mode] 
very very rapid: monopole transitions !  

Sudden change in effective Hamiltonian precipitates transitions.
Akin to atomic transitions precipitated by β decay of nucleus.

● Sommerfeld enhancement of direct annihilation
● Binding of bound states

The Higgs as a light mediator

Ko,Matsui,Tang: 1910:04311
Oncala, KP: 1911.02605
Oncala, KP: 2101.08666
Oncala, KP: 2101.08667

Harz, KP: 1711.03552 

 
Harz, KP: 1901.10030

March-Russel, West 0812.0559
KP, Postma, Wiechers: 1505.00109
An, Wise, Zhang: 1606.02305
KP, Postma, de Vries: 1611.01394
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In some prototypical WIMP models, 
DM is the lightest linear combination of the neutral components of 

SU(2) multiplets that couple to the Higgs

Includes many SUSY scenarios, 
e.g. Wino-Higgsino, coloured coannihition

If m > 5 TeV, DM freeze-out begins before electroweak phase transition.

  ⇒ Bound-state formation via Higgs-doublet emission!

Renormalisable WIMP models with coupling to the Higgs

Change in potential
  ⇒ monopole transition!
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Huge effect!

~ 102 in relic density!

Impels reconsideration 
of Higgs-portal models
(incl. neutralino-squark 

coann scenarios)

Singlet-Doublet coupled to the Higgs:  L ⊃ - y D H S

m
D
 ≃ m

S
 → D and S co-annihilate. 

Freeze-out begins before the EWPT if m
DM

 > 5TeV

Renormalisable WIMP models with coupling to the Higgs
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In this conference

● “Closing the window on WIMP dark matter models”, 
Salvatore BOTTARO (Monday 30/05)

● “Sommerfeld Effect and Bound State Formation in Simplified 
Dark Matter Models”, Emanuele COPELLO (Wednesday 01/06)

Many studies of bound-state effects on DM freeze-out
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Is it random that non-perturbative effects arise 
in all these models at multi-TeV?

Or is there a model-independent way 
to understand and predict it?

If so, what else can we learn from it?
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Is it random that non-perturbative effects arise 
in all these models at multi-TeV?

Or is there a model-independent way 
to understand and predict it?

If so, what else can we learn from it?

Think
good old
unitarity
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Partial-wave unitarity limit
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Partial-wave unitarity limit
in non-relativistic regime

Implies upper bound on the mass of thermal-relic DM   
Griest, Kamionkowski (1990)

● Assumes contact-type 
interactions, σvv

rel
 = constant

● Considers only s-wave 
annihilation
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Parametric dependence
on mass and velocity implies 
that 
σ

uni
 can be approached 

or attained only by 
long-range interactions

Long-range interactions 
imply bound states,
which may form by 
higher partial waves 
of the scattering state 
that contribute at the 
same order.

● Thermal relic DM can be much  
heavier than anticipated.

● In viable thermal scenarios, 
expect long-range behavior 
at m

DM
  ≳ TeV)  few TeV 

(important for exps)

● No model-independent 
unitarity limit on 
mass of thermal relic DM!

Baldes, KP: 1703.00478

Partial-wave unitarity limit
in non-relativistic regime

What 
interactions 
can realise 

the unitarity limit?
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Conclusions
● Bound states impel complete reconsideration of thermal decoupling at 

/ above the TeV scale: emergence of a new type of inelasticity

Unitarity limit can be approached / realised only by long-range interactions   
   ⇒ bound states play very important role!          Baldes, KP: 1703.00478

There is no unitarity limit on the mass of thermal relic DM!

● Experimental implications:

– DM heavier than anticipated: multi-TeV probes very important.

– Indirect detection:

Enhanced rates due to BSF
Novel signals: low-energy radiation emitted in BSF
Indirect detection of asymmetric DM 

– Colliders: improved detection prospects due increased mass gap in 
coannihilation scenarios

● Effects not limited to the thermal-relic scenario...
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