Perspectives on dark matter

Kallia Petraki

Sorbonne University, LPTHE, Paris and Nikhef, Amsterdam

Planck conference Paris, 31 May 2022

Classification schemes of dark matter candidates

Interaction with the SM

Portal operators $\epsilon F^{\mu\nu}F$		SM interactions	Heavy	Heavy mediators	
$(\mu\phi+\lambda\phi^2) H ^2$		WIMPs	E	EFTs	
yLHN					
(Self-) interaction type					
Long-range Light mediators m _{med} << m _{DM}			Contact type Heavy mediators m _{med} ≳ m _{DM}		
Production mechanism					
Scalar condensates	Collapse of density perturbations	Freeze-in	Asymmetric freeze-out Hidden sector	Symmetric freeze-out	
Q-balls Axions	Primordial black holes	Sterile neutrinos Gravitinos	models, e.g. dark U(1), dark QCD	WIMPs, Hidden sectors	

Frontiers in dark matter searches

Heavy DM

Particles with $m \ge \text{TeV}$ coupled to SM via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

• Light DM

Particles with m \leq few GeV, possibly coupled to SM via a portal interaction, not constrained by older direct detection experiments

 \rightarrow development of new generation of direct detection experiments

Frontiers in dark matter searches

Heavy DM

Particles with $m \ge TeV$ coupled to SM via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

Light DM

Parti

• Simple thermal-relic WIMP models live in the (multi-)TeV scale.

• Thermal-relic DM can be as heavy as few \times 100 TeV.

How heavy can thermal-relic DM be, and what are the underlying dynamics of heavy (≳ TeV) thermal-relic DM?

JIIS

heavy Perspectives on dark matter

Kallia Petraki

Sorbonne University, LPTHE, Paris and Nikhef, Amsterdam

Planck conference Paris, 31 May 2022

Long-range interactions

Long-range interactions

Relevant for various models

- Self-interacting DM
- WIMP DM with m_{DM} > few TeV.
- WIMP DM with m_{DM} < TeV, in scenarios of DM co-annihilation with coloured partners.

+ other models with dark forces

What's different about long-range interactions?

Sommerfeld

Bound

states

Distorts wavefunctions of free particles pairs ⇒ affects all cross-sections

 \Rightarrow freeze-out, indirect detection, DM self-scattering

Unstable bound states ⇒ extra annihilation channel

- Freeze-out
- Indirect detection
- Novel low-energy indirect detection signals
- Colliders

von Harling, Petraki 1407.7874

Pospelov, Ritz 0810.5167 March-Russel, West 0812.0559

Kusenko, Pearce 1303.7294

Shepherd, Tait, Zaharijas 0901.2125

Stable bound states (particularly of asymmetric DM)

- Elastic scattering
- Novel low-energy indirect detection signals
- Black holes via dissipation

Kusenko, Pearce 1303.7294

Flores, Kusenko 2008.12456

_Alex Kusenko's talk

Sommerfeld

Bound

states

Distorts wavefunctions of free particles pairs

⇒ affects all cross-sections

⇒ freeze-out, indirect detection, DM self-scattering

Unstable bound states ⇒ extra annihilation channel

Freeze-out

- Indirect detection
- Novel low-energy indirect detection signals
- Colliders

von Harling, Petraki 1407.7874

Pospelov, Ritz 0810.5167 March-Russel, West 0812.0559

Kusenko, Pearce 1303.7294

Shepherd, Tait, Zaharijas 0901.2125

Stable bound states (particularly of asymmetric DM)

- Elastic scattering
- Novel low-energy indirect detection signals

Kusenko, Pearce 1303.7294

 Black holes via dissipation

Flores, Kusenko 2008.12456

Alex Kusenko's talk

Freeze-out with bound states

- Dark U(1) sector
- Neutralino-squark coannihilation
- The role of the Higgs

Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Neutralino in SUSY models Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP

⇒ DM density determined by "effective" Boltzmann equation $n_{\text{tot}} = n_{\text{LSP}} + n_{\text{NLSP}}$ $\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$ Scenario probed in colliders. Important to compute DM density accurately! → QCD corrections

DM coannihilation with scalar colour triplet MSSM-inspired toy model

Bound-state formation vs Annihilation

DM coannihilation with scalar colour triplet MSSM-inspired toy model

DM coannihilation with scalar colour triplet MSSM-inspired toy model The effect of the Higgs-mediated potential

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Binding of bound states

Harz, KP: 1711.03552

Harz, KP: 1901.10030

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Harz, KP: 1711.03552

Binding of bound states

Harz, KP: 1901.10030

• Formation of bound states via Higgs (doublet) emission ?

Capture via emission of neutral scalar suppressed, due to selection rules: quadruple transitions

March-Russel, West 0812.0559 KP, Postma, Wiechers: 1505.00109 An, Wise, Zhang: 1606.02305 KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode] very very rapid: monopole transitions ! Ko,Matsui,Tang: 1910:04311 Oncala, KP: 1911.02605

Ko,Matsul, lang: 1910:0431 Oncala, KP: 1911.02605 Oncala, KP: 2101.08666 Oncala, KP: 2101.08667

Sudden change in effective Hamiltonian precipitates transitions. Akin to atomic transitions precipitated by β decay of nucleus.

Renormalisable WIMP models with coupling to the Higgs

In some prototypical WIMP models, DM is the lightest linear combination of the neutral components of SU(2) multiplets that couple to the Higgs

$$\delta \mathcal{L} \supset -y ar{X}_n H X_{n+1} + ext{h.c.}$$

Includes many SUSY scenarios, e.g. Wino-Higgsino, coloured coannihition

If m > 5 TeV, DM freeze-out begins before electroweak phase transition.

⇒ Bound-state formation via Higgs-doublet emission!

$$\begin{array}{c}
H \\
X_{n} \\
\overline{X_{n}} \\
\overline{$$

Renormalisable WIMP models with coupling to the Higgs

Singlet-Doublet coupled to the Higgs: $L \supset -y \overline{D} H S$ $m_D \simeq m_S \rightarrow D$ and S co-annihilate. Freeze-out begins before the EWPT if $m_{DM} > 5$ TeV

Oncala, KP: 2101.08666/7

Many studies of bound-state effects on DM freeze-out

In this conference

- "Closing the window on WIMP dark matter models", Salvatore BOTTARO (Monday 30/05)
- "Sommerfeld Effect and Bound State Formation in Simplified Dark Matter Models", Emanuele COPELLO (Wednesday 01/06)

Is it random that non-perturbative effects arise in all these models at multi-TeV?

Or is there a model-independent way to understand and *predict* it?

If so, what else can we learn from it?

Is it random that non-perturbative effects arise in all these models at multi-TeV?

Or is there a model-independent way to understand and *predict* it?

If so, what else can we learn from it?

Partial-wave unitarity limit

$$S^\dagger S = 1 \quad \stackrel{S=1+iT}{\longrightarrow} \quad -i(T-T^\dagger) = T^\dagger T$$

Project on a partial wave and insert complete set of states on RHS

\Downarrow

$$\sigma_{ ext{inel}}^{(\ell)} \leqslant rac{\pi(2\ell+1)}{k_{ ext{cm}}^2} \stackrel{ ext{non-rel}}{\longrightarrow} rac{\pi(2\ell+1)}{\mu^2 v_{ ext{rel}}^2} \stackrel{\mu=M_{ ext{DM}}/2}{\longrightarrow} rac{4\pi(2\ell+1)}{M_{ ext{DM}}^2 v_{ ext{rel}}^2}$$

[Griest, Kamionkowski (1990); Hui (2001)]

Physical meaning: saturation of probability for inelastic scattering

Partial-wave unitarity limit in non-relativistic regime

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} ~\leqslant~ \sigma_{
m uni}^{(\ell)} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

Implies upper bound on the mass of thermal-relic DM

Griest, Kamionkowski (1990)

$$egin{aligned} &\sigma_{
m ann} v_{
m rel} &\simeq 2.2 imes 10^{-26} \ {
m cm}^3/{
m s} &\leqslant rac{4\pi}{M_{
m DM}^2 v_{
m rel}} \ &\langle v_{
m rel}^2
angle^{1/2} &= (6T/M_{
m DM})^{1/2} \quad {
m freeze-out} M_{
m DM}/T pprox 25 \ &0.49 \ &M_{
m DM}/T pprox 25 \ &0.49 \ &M_{
m uni} &\simeq egin{cases} 117 \ {
m TeV}, & {
m self-conjugate DM} \ 83 \ {
m TeV}, & {
m non-self-conjugate DM} \ & {
m non-self-conjugate DM} \ &M_{
m uni} & {
m DM} \ &M_{
m uni} & {
m cm} \ &M_{
m uni}$$

- Assumes contact-type interactions, $\sigma v_{rel} = constant$
- Considers only s-wave annihilation

- Parametric dependence on mass and velocity implies that
- σ_{uni} can be approached or attained only by long-range interactions

Long-range interactions imply **bound states**, which may form by **higher partial waves** of the scattering state that contribute at the same order.

- Thermal relic DM can be much heavier than anticipated.
 - In viable thermal scenarios, expect long-range behavior at m_{DM} ≥ few TeV (important for exps)
 - No model-independent unitarity limit on mass of thermal relic DM!

Baldes, KP: 1703.00478

Conclusions

• Bound states impel complete reconsideration of thermal decoupling at / above the TeV scale: *emergence of a new type of inelasticity*

Unitarity limit can be approached / realised only by long-range interactions → bound states play very important role! Baldes, KP: 1703.00478

There is no unitarity limit on the mass of thermal relic DM!

- Experimental implications:
 - DM heavier than anticipated: multi-TeV probes very important.
 - Indirect detection:

Enhanced rates due to BSF Novel signals: low-energy radiation emitted in BSF Indirect detection of asymmetric DM

- Colliders: improved detection prospects due increased mass gap in coannihilation scenarios
- Effects not limited to the thermal-relic scenario...