Latest results from LIGO-Virgo third observation run

PLANCK 2022 - Paris - May 31st

Viola Sordini – IP2I Lyon

Outline

- Introduction to GW and terrestrial interferometers
- O3 data taking
- (many!) Results
 - CBC catalog(s)
 - NSBH discovery
 - Astrophysical populations
 - Tests of GR
 - Cosmology
 - O3 search for short (and long)-duration bursts
 - Lensing signature
 - Triggered searches (GRB/FRB O3a)
 - IMBH search
 - O3a sub-solar mass
 - A taste of non-transient analyses (CW, SGWB)
 - + many links..

Gravitational Waves

- Ripples in the spacetime metric generated by the acceleration of masses, propagating at the speed of light
- First direct observation 2015 (LIGO)
- Possible sources of detectable GW are some of the most violent events in the Universe involving massive and compact objects in relativistic regime
- Probe gravity in unprecedented conditions
- GW are a new messenger from the Universe, implications for
 - Astrophysics
 - Cosmology
 - Nuclear physics
 - ...

GW terrestrial detectors

- Michelson interferometers with Fabry-Pérot cavities in the arms, operating on dark fringe
- Amplitude of gravitational waves h~10⁻²², δ L=hL \rightarrow km-long arms
- Sensitive in the 10Hz 10 KHz frequency band
- Sky localisation thanks to different positions and orientations

O3 data taking

- O3a : 1st April 2019 1st October 2019
- O3b : 1st November 2019 27th March 2020
- Duty cycle (O3b) ~76-79% for each detector, for an effective observation time during O3 of
 - 319 days (at least) one detector
 - 264 days (at least) two detectors
 - 156 days three detectors
- Several detector improvements wrt previous data taking
- BNS range wrt O2 : x1.5-1.7
- A lot of work of detector characterization, noise understanding/subtraction, data quality optimization (<u>LIGO</u>, <u>Virgo</u>)
- April 2021 O3a data public release
- November 2021 O3b data public release

LIGO Virgo KAGRA physics program

Transient GW signals

• Compact Binary Coalescences (CBC) – modelled

• Other "bursts", e.g. supernovae - unmodelled

Longer duration GW signals

• Continuous emission from rotating neutron stars

Stochastic GW background

Compact Binary Coalescences (CBC)

- Coalescences of compact objects : black holes or neutron stars (BBH, BNS, NSBH)
- Look for specific signal in large noise with matched filtering technique : cross-correlation of the data with a **known signal** waveform (weighted by noise)
- Provides a signal to noise ratio (and false alarm rate)
- Waveform assume GR, analytical in inspiral phase (PN), numerical relativity for merger, perturbation theory for ringdown
- Coalescences involving a NS can have an EM counterpart (only happened for GW170817 until now)
- CBC search analyses run **online** during data taking to issue alerts in case of interesting candidates
- Searches are then run offline with relaxed selection cuts, calibrated data, better noise subtraction, dataquality etc.

CBC searches

- Several analyses (pipelines) participate to the search :
 - Different strategies
 - Different parameter space
- Search sensitivity, estimated on simulation, shows their complementarity
- All use data from LIGO Hanford, LIGO Livingston, and Virgo

O3 LIGO-Virgo CBC catalogs

First half of O3 observation period (April - October 2019)

- GWTC-2 (Phys. Rev. X 11, 021053 (2021) arXiv)
 - Mixture of low-latency and offline calibrated data (improved noise subtraction)
 - 2 independent modelled searches, 1 minimally modelled
 - List of 39 candidates built based on the FAR
- GWTC-2.1 (<u>arXiv</u>) superseding GWTC-2
 - Offline calibrated data, improved data quality. 3 modelled searches.
 - List of 44 candidates built based on p_{astro} + sub threshold candidates

Second half of O3 observation period (November 2019 – March 2020)

- GWTC-3 (arXiv)
 - 3 independent modelled searches, 1 minimally modelled
 - List of 35 additional candidates based on p_{astro}
 - Including first confident observations of NSBH

 \rightarrow 90 confident candidates since the first observation !

A CBC catalog anathomy

- List of events
- Significance as estimated by the several analyses

Name	Inst.	cWB		GstLAL		MBTA		PyCBC-broad		PyCBC-BBH						
	-	$_{(yr^{-1})}^{FAR}$	SNR	p_{astro}	FAR (yr^{-1})	SNR	p_{astro}	FAR (yr^{-1})	SNR	p_{astro}	FAR (yr^{-1})	SNR	p_{astro}	FAR (yr^{-1})	SNR	p_{astro}
GW191103_012549	$^{\rm HL}$	-	_	-	-	-	_	27	9.0	0.13	4.8	9.3	0.77	0.46	9.3	0.94
GW191105_143521	HLV	-	_	_	24	10.0	0.07	0.14	10.7	> 0.99	0.012	9.8	> 0.99	0.036	9.8	> 0.99
GW191109_010717	$^{\rm HL}$	< 0.0011	15.6	> 0.99	0.0010	15.8	> 0.99	$1.8 imes 10^{-4}$	15.2	> 0.99	0.096	13.2	> 0.99	0.047	14.4	> 0.99

- Data around each candidate is analysed again to determine astrophysical sources properties (masses, spins, localisation..)
- Obtained with expensive Bayesian inference algorithms (parameter estimation)
- Noise assumed to be Gaussian, stationary, and uncorrelated between detectors
- Multiple waveform models (different modelling techniques, including different physical effects), different samplers
- If at least one component with m<3 $M_{sun} \rightarrow$ waveforms with matter effects

Sources parameters Estimation

+ Dedicated IMBH search (GW190521+2 marginal candidates) - A&A 659, A84 (2022) (arXiv)

From GWTC-2

VAAVAA VA

3

 $D_{\rm L}/{\rm Gpc}$

0

1.0 - 1

0

 $\chi_{\rm eff}$

NSBH discovery

• No EM counterpart to date

- GW200115 HL(V) coincidence, (best) FAR 10⁻⁵yr⁻¹
- GW200105 Single-detector (L) event, FAR (1/2.8)yr⁻¹
- Secondary objects masses consistent with limits for NS masses (for non-rotating NS and Galactic NS)
- No evidence of tidal effects or precession
- GW200115 BH spin negatively aligned with respect to the orbital angular momentum, no formation process is excluded.
- Lensing excluded by non-overlapping posteriors

Event		GSTLAL	MBTA	PyCBC	SPIIR
GW200105	low-latency	13.9	13.3	13.2^{*}	13.2
G W 200105	offline	13.9	13.4	13.1^{*}	
CW200115	low-latency	11.4	11.4	11.3	11.0
G W 200115	offline	11.6	11.2	10.8^{*}	_

ApJL, 915, L5 (2021)

(arXiv)

Implications of the CBC observations

- CBC detections have become a routine for GW astronomy !
- An input to several studies
 - Astrophysical populations studies
 - Tests of General Relativity
 - Cosmology
 - Targeted searches (GRBs, FRBs..)
 - Lensing signatures searches

Rates and populations

Population properties of compact objects based on 67 CBC from GWTC-3 (FAR<0.25/yr)

- Merger rates depend on models assumed for masses (Power Law + Dip + Break, Binned Gaussian process, Multi source), spins. 6 events have >5% probability of being in the gap.
- Mass distribution of NS in binaries, different from galactic NS (peak at 1.35 Msun)

New insight on BH population properties

- Mass distribution has a substructure. Decrease for M>50Msun, inconclusive evidence of upper mass gap. Correlation between spins and masses (mass ratios?)
- R_{BBH} z evolution consistent with one of star formation rate

	BNS	NSBH	BBH	NS-Gap	BBH-gap	Full	
	$m_1 \in [1, 2.5] M_{\odot}$	$m_1 \in [2.5, 50] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [2.5, 5] M_{\odot}$	$m_1 \in [2.5, 100] M_{\odot}$	$m_1 \in [1, 100] M_{\odot}$	
	$m_2 \in [1, 2.5] M_\odot$	$m_2 \in [1, 2.5] M_\odot$	$m_2 \in [2.5, 100] M_{\odot}$	$m_2 \in [1, 2.5] M_{\odot}$	$m_2 \in [2.5, 5] M_{\odot}$	$m_2 \in [1, 100] M_{\odot}$	
PDB (pair)	170^{+270}_{-120}	27^{+31}_{-17}	$25^{+10}_{-7.0}$	19^{+28}_{-13}	$9.3^{+15.7}_{-7.2}$	240^{+270}_{-140}	
PDB (ind)	44^{+96}_{-34}	73^{+67}_{-37}	$22^{+8.0}_{-6.0}$	$12^{+18}_{-9.0}$	$9.7^{+11.3}_{-7.0}$	150^{+170}_{-71}	
MS	$660\substack{+1040\\-530}$	49^{+91}_{-38}	37^{+24}_{-13}	$3.7^{+35.3}_{-3.4}$	$0.12\substack{+24.88\\-0.12}$	770^{+1030}_{-530}	
BGP	$98.0\substack{+260.0\\-85.0}$	$32.0\substack{+62.0\\-24.0}$	$33.0^{+16.0}_{-10.0}$	$1.7\substack{+30.0\\-1.7}$	$5.2^{+12.0}_{-4.1}$	$180.0\substack{+270.0\\-110.0}$	
Merged	10 - 1700	7.8 - 140	16-61	0.02 - 39	$9.4 imes 10^{-5} - 25$	72 - 1800	

O3a ApJL 913 L7 (2021) (arXiv)

O3b (arXiv)

Cosmology with CBC

- Based on 47 highly significant (FAR<0.25yr-1, SNR>11) CBC observations: 42 BBH, 2 BNS, 2NSBH, GW190814
- GW detection \rightarrow measurement of luminosity distance
- Different methods to constrain H₀
 - Jointly fitting the cosmological parameters and the source population properties of BBHs
 - Fixing the source population properties, and inferring the cosmological parameters using statistical galaxy catalog information (use population for out of catalog)
 - (Redshift information from EM counterpart only for GW170817)

Tests of GR with CBC

Phys. Rev. D 103 122002 (2021) (<u>arXiv</u>)

- Tests of GR using 47 CBC from GWTC-2 + 15 from GWTC-3 (FAR<10⁻³/yr) no evidence for new physics beyond general relativity. Using a large variety of waveform approximants
- Residual tests from remnant coherent power in network data after subtraction of candidates
- Inspiral-merger-ringdown consistency checks (mass and spin of remnant BBH)
- Generic modifications to waveforms (varying post-Newtonian and phenomenological coefficients) → constraints ~2x stronger than previous
- Gravitational-wave dispersion (null in GR) \rightarrow constraints on Lorentz-violating coefficients, graviton mass m_g \leq 1.27 × 10⁻²³ eV/c2 @90%CL
- Data consistent with tensorial polarization, no deviation from Kerr BH, no post-merger echoes

O3 Search for short GW bursts

- Transient [ms-s] GW signals in [24–4096] Hz, no assumption on signal morphology
- Two independent analyses look for excesses of signal power in time- frequency (Coherent WaveBurst and BayesWaves as a followup on interesting times)
- No GW detection (iFAR>100 yr) beyond the CBC ones, sensitivity studies based on simulations
- Generic signal morphologies: sine-Gaussian wavelets (SG), Gaussian pulses (GA), and band-limited white-noise bursts (WNB).
- CCSNe: different models (s18, m10, s9, m39, 35OC)
- Pulsar glitches (GW bulk emission described by f-mode), Vela Pulsar standard candle. EoS: APR4 (soft) and H4 (hard)

Detectable glitch size for ε =0.5, iFAR \ge 100 yr. Box width = variation over mass bin. Glitch sizes for Vela-like pulsars need to be >~10⁻⁴ to have 50% chances of being detected in O3.

No confident candidate for long-duration bursts - Phys. Rev. D 104, 102001 (arXiv)

Other transient searches

Lensing of O3a BBH

- Multiple images (sky-localisation and most parameters consistent, constrained time-delay)
- Analyse posterior overlap of all GWTC-2 candidates ightarrow Joint-PE analysis for most promising
- 11 GWTC-2 pairs with high parameters consistency, none prefers the lensed hypothesis

Triggered searches

- Search for GW transient associated with GRB (Fermi/Swift) or FRB(CHIME/FRB)
- Two independent pipelines
- No GW signal associated to a GRB or FRB. Sensitivity determined on simulation. Exclusion distance.

CBC techniques used to search for sub-solar mass objects, constraints on PBH models

2021 ApJ 923

14 (arXiv)

(<u>arXiv</u>)

Not only transient !

- Early O3 all-sky binaries CW Phys. Rev. D 103, 064017 arXiv
- Full O3 targeted J0537-6910 CW 2021 ApJ 922 71 <u>arXiv</u>
- Full O3 PSR J0537-6910 pulsar r-mode CW 2021 ApJ 922 71 <u>arXiv</u>
- O3 SN remnants CW 2021 ApJ 921 80 <u>arXiv</u>, Phys. Rev. D 105, 082005 <u>arXiv</u>
- O3 all-sky isolated CW (early Phys. Rev. D 104, 082004 arXiv), arXiv
- O3 twenty AMXPs CW Phys. Rev. D 105, 022002 arXiv
- Full O3 BH boson cloud CW Phys. Rev. D 105, 102001 arXiv
- Early O3 Cas A / Vela Jr CW Phys. Rev. D 105, 082005 arXiv
- O3 isotropic stochastic Phys. Rev. D 100, 061101(R) <u>arXiv</u>
- O3 anisotropic stochastic Phys. Rev. D 104, 022005 <u>arXiv</u>
- O3 all-sky cosmic strings search Phys. Rev. Lett. 126, 241102 arXiv
- O3 constraints on dark photon and dark matter Phys. Rev. D 105, 063030 <u>arXiv</u>

Conclusions

- O3 big success for the LIGO-Virgo collaboration
- 1 year run with 3-interferometers network. Efficient operation, detector characterisation and noise handling. Automatic alerts.
- Many varied scientific results
 - 90 high-probability CBC candidates since first detection
 - Unfortunately only one EM counterpart observed until now (GW170817)
 - Constraints on sources populations and rates, tests of GR, cosmology
 - Searches performed for (non-CBC) bursts, CW emission, SGWB, DM..
 - Although no evidence (other than CBC) for the moment, sensible improvements in constraints
- New observation period to start end of 2022
 - 4 interferometers network
 - expect 3-4 times more observations !

