Measuring the distortion of time at cosmological scales

Camille Bonvin

University of Geneva, Switzerland

Current status

Mystery to solve: what is causing the acceleration of our Universe

- Cosmological constant
- Dynamical dark energy
- Theory of gravity

Plethora of new data: DESI, Euclid, SKA, LSST

ullet Goal: test the validity of Λ CDM and of General Relativity

What do we want to test?

♦ At late time our Universe is described as:

Homogeneous and isotropic background + fluctuations

Described by 4 fields

Perturbations in the geometry

gravitational potentials

$$ds^{2} = -a^{2} \left[\left(1 + 2\Psi \right) d\eta^{2} + \left(1 - 2\Phi \right) \delta_{ij} dx^{i} dx^{j} \right]$$

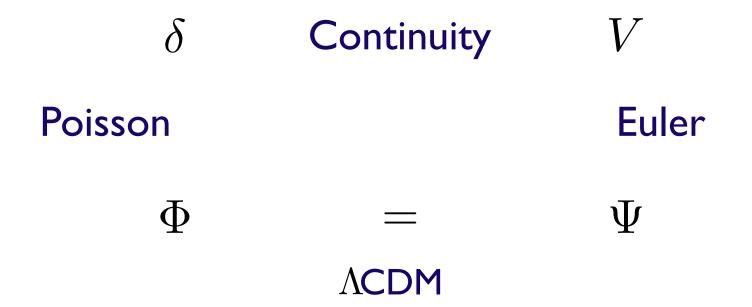
♦ Perturbations in the universe's **content**:

density fluctuations $\delta = \frac{\delta \rho}{\rho}$ peculiar velocity V

General Relativity provides relations between the fields

- ♦ Ideally, we want to measure the 4 fields and compare them
- ◆ Currently not possible: we have only 3 measurements
 - ullet δ and V from the distribution of galaxies
 - $\Phi + \Psi$ from gravitational lensing

♦ General Relativity provides relations between the fields

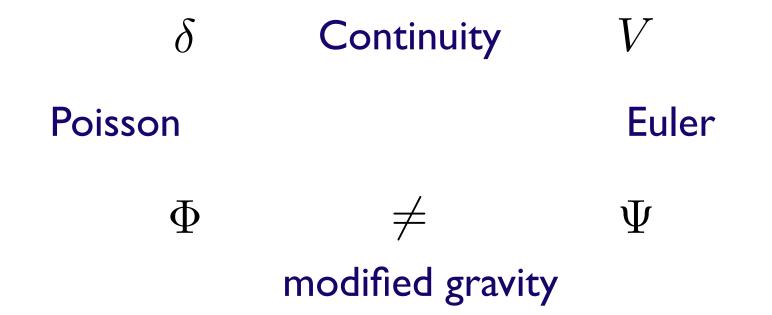


- ♦ Ideally, we want to measure the 4 fields and compare them
- ◆ Currently not possible: we have only 3 measurements
 - ullet δ and V from the distribution of galaxies
 - $\Phi + \Psi$ from gravitational lensing

♦ General Relativity provides relations between the fields

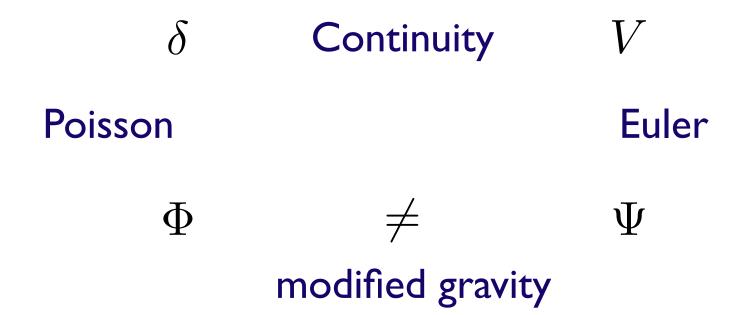
- ◆ Ideally, we want to measure the 4 fields and compare them
- ◆ Currently not possible: we have only 3 measurements
 - ullet δ and V from the distribution of galaxies
 - $\Phi + \Psi$ from gravitational lensing

♦ General Relativity provides relations between the fields



- ◆ Ideally, we want to measure the 4 fields and compare them
- ◆ Currently not possible: we have only 3 measurements
 - ullet δ and V from the distribution of galaxies
 - $\Phi + \Psi$ from gravitational lensing

♦ General Relativity provides relations between the fields



◆ Ideally, we want to measure the 4 fields and compare them

We cannot test 4 relations with 3 observables

- ullet δ and V from the distribution of galaxies
- $\Phi + \Psi$ from gravitational lensing

Current methods

Assume that Euler and continuity equations are valid

- lacktriangle Measure $V \rightarrow \Psi$ compare with $\Phi + \Psi$
- ◆ Evolution equation for growth of structure → constrain Poisson equation with galaxy clustering

Results consistent with General Relativity

◆ This is valid only if Euler and continuity eqs. are valid: restrictive assumption for dark matter

Equivalence principle

• Euler equation encodes the weak equivalence principle

♦ It tells us that all objects fall in the same way in a gravitational potential

♦ It has been precisely **tested** for standard matter and photons, but not for dark matter

♦ If we want to test gravity in a model-independent way, we should relax the assumption that dark matter obeys the weak equivalence principle

Equivalence principle

• Euler equation encodes the weak equivalence principle

It tells us that all objects fall in the same way in a gravitation

we cannot test Poisson equation

We cannot compare Φ and Ψ photons, but not for dark matter.

♦ If we want to test gravity in a model-independent way, we should relax the assumption that dark matter obeys the weak equivalence principle.

Outline

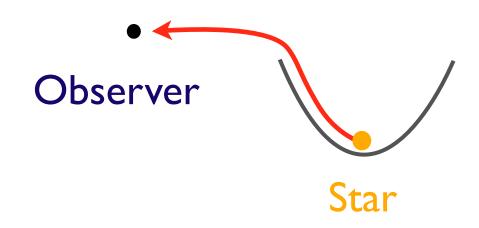
- lacktriangle Way out: we can measure the distortion of time Ψ with future galaxy survey
 - → Additional observable to test gravity
- Method to measure time distortion with galaxy clustering

◆ Forecasts with SKA

♦ Tests of gravity: weak equivalence principle

Distortion of time

- We measure the redshift of photons escaping a gravitational potential
- First test done with white dwarfs in 1925



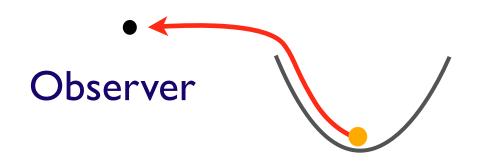
Gravitational redshift

♦ Here: same test but at cosmological distances, ~50 Mpc

 Method: gravitational redshift modifies the observed clustering of galaxies

Distortion of time

- We measure the redshift of photons escaping a gravitational potential
- ◆ First test done with white dwarfs in 1925



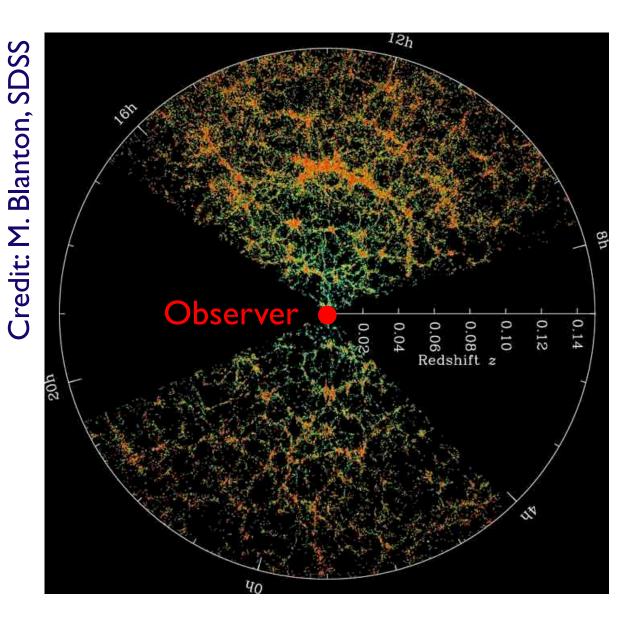
Gravitational redshift

Sensitive to time distortion Ψ

♦ Here: same test but at cosmological distances, ~50 Mpc

 Method: gravitational redshift modifies the observed clustering of galaxies

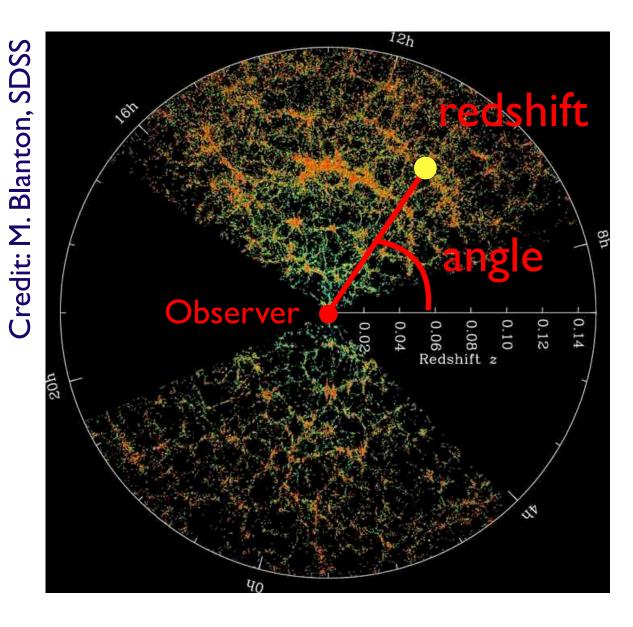
Galaxy clustering



- ♦ Redshift as indicator of distance
 - Distant galaxies more affected by expansion
- ◆ Gravitational redshift is present
- slight distortion in maps due to the gravitational potentials

- Fluctuations in number of galaxies $\Delta = \frac{N N}{\bar{N}}$
 - Δ = intrinsic distortions + gravitational redshift
- ♦ How do we isolate gravitational redshift?

Galaxy clustering



♦ Redshift as indicator of distance

Distant galaxies more affected by expansion

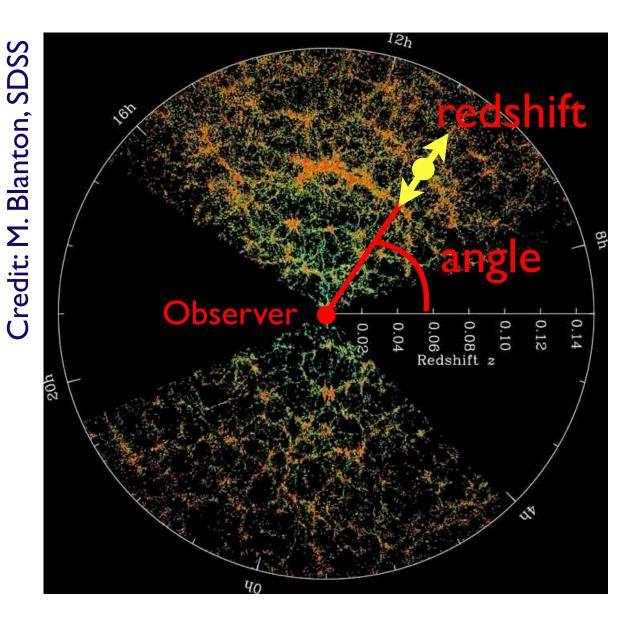
- ◆ Gravitational redshift is present
- slight distortion in maps due to the gravitational potentials

• Fluctuations in number of galaxies $\Delta = \frac{N-N}{\bar{N}}$

 Δ = intrinsic distortions + gravitational redshift

♦ How do we isolate gravitational redshift?

Galaxy clustering



♦ Redshift as indicator of distance

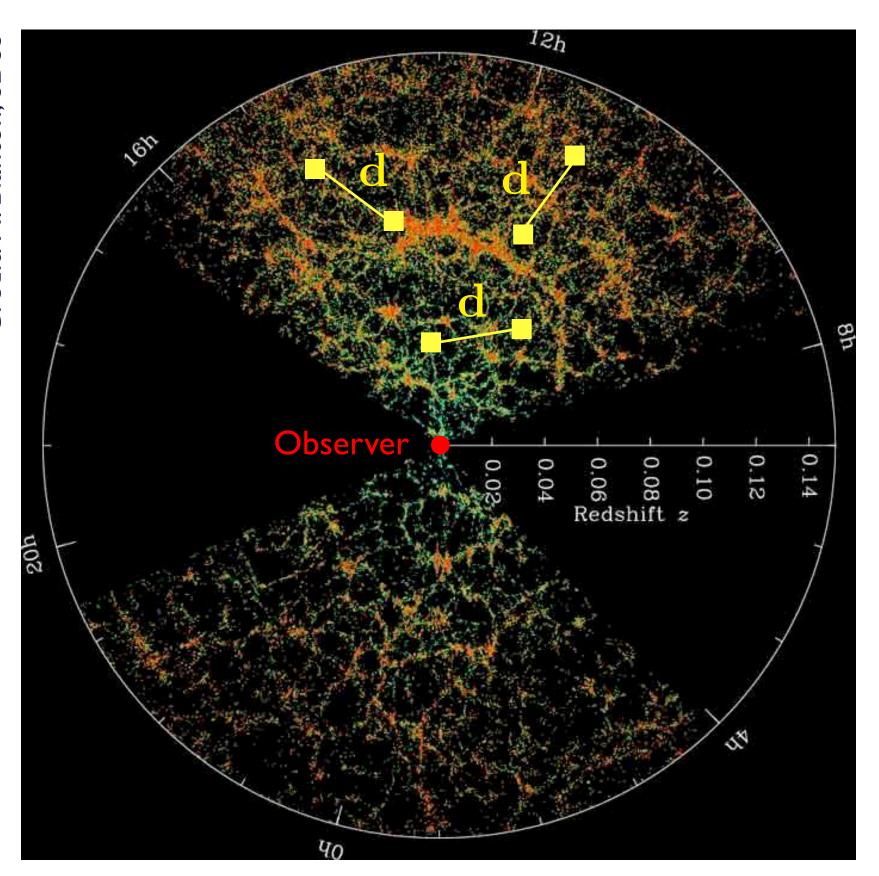
Distant galaxies more affected by expansion

- ◆ Gravitational redshift is present
- slight distortion in maps due to the gravitational potentials

• Fluctuations in number of galaxies $\Delta = \frac{N-N}{\bar{N}}$

 Δ = intrinsic distortions + gravitational redshift

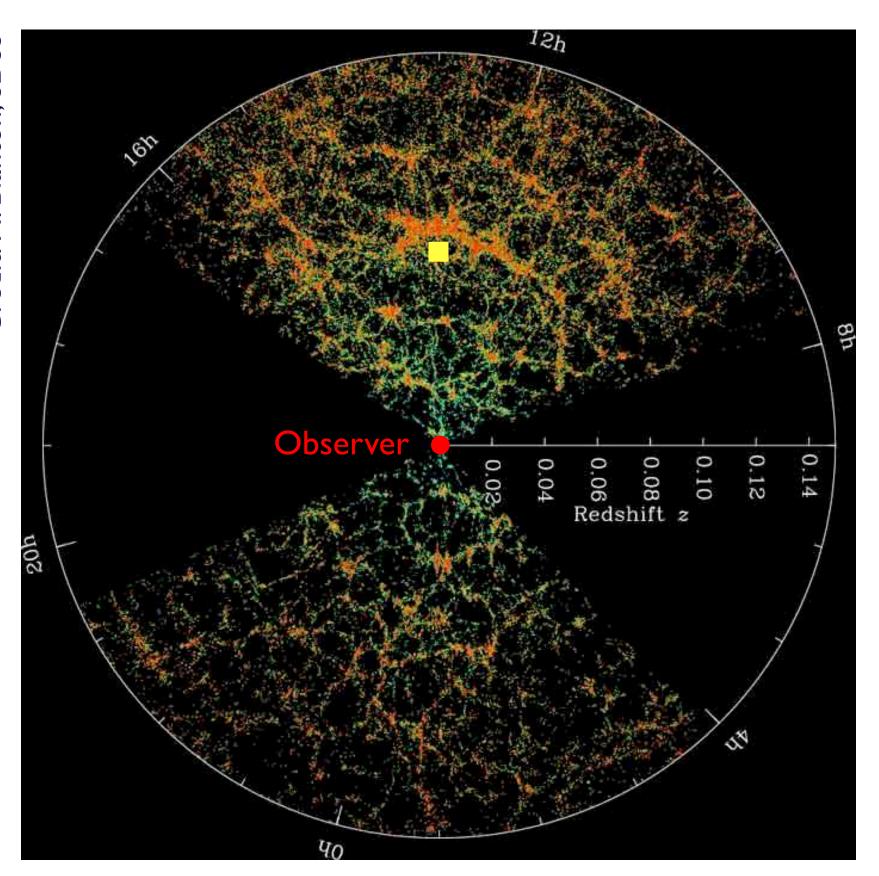
♦ How do we isolate gravitational redshift?



$$\langle \Delta(\mathbf{x})\Delta(\mathbf{x}') \rangle$$
 \triangleright

Different pixels

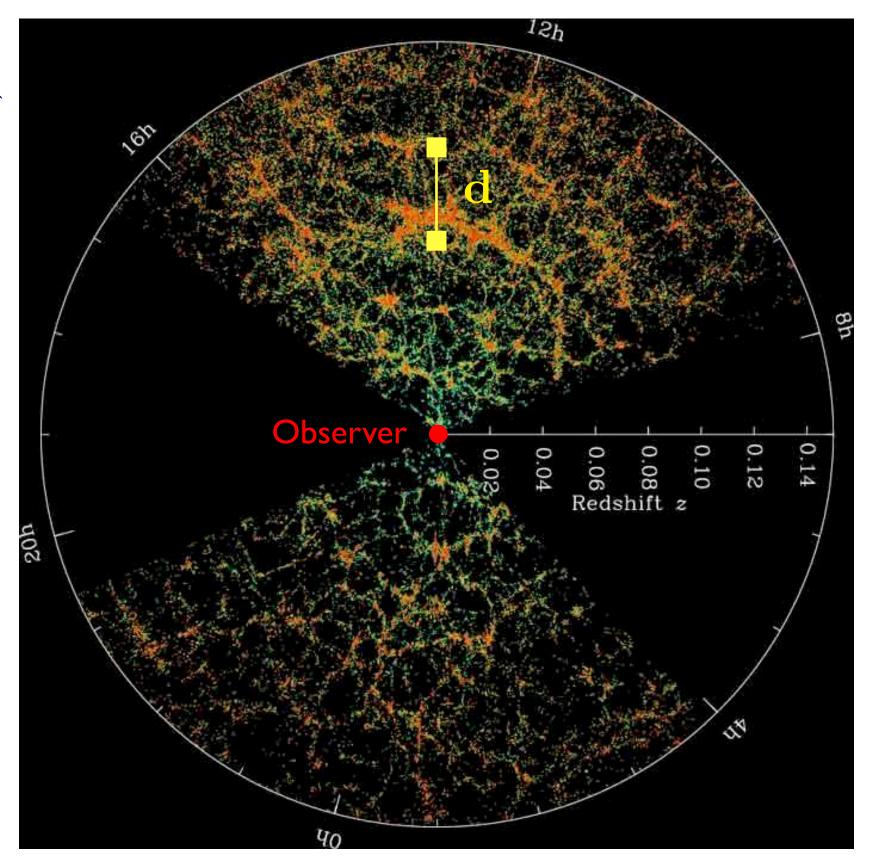
- Matter fluctuations generate isotropic correlations
- Gravitational redshiftbreaks the symmetry



$$\langle \Delta(\mathbf{x})\Delta(\mathbf{x}') \rangle$$
 \triangleright

Different pixels

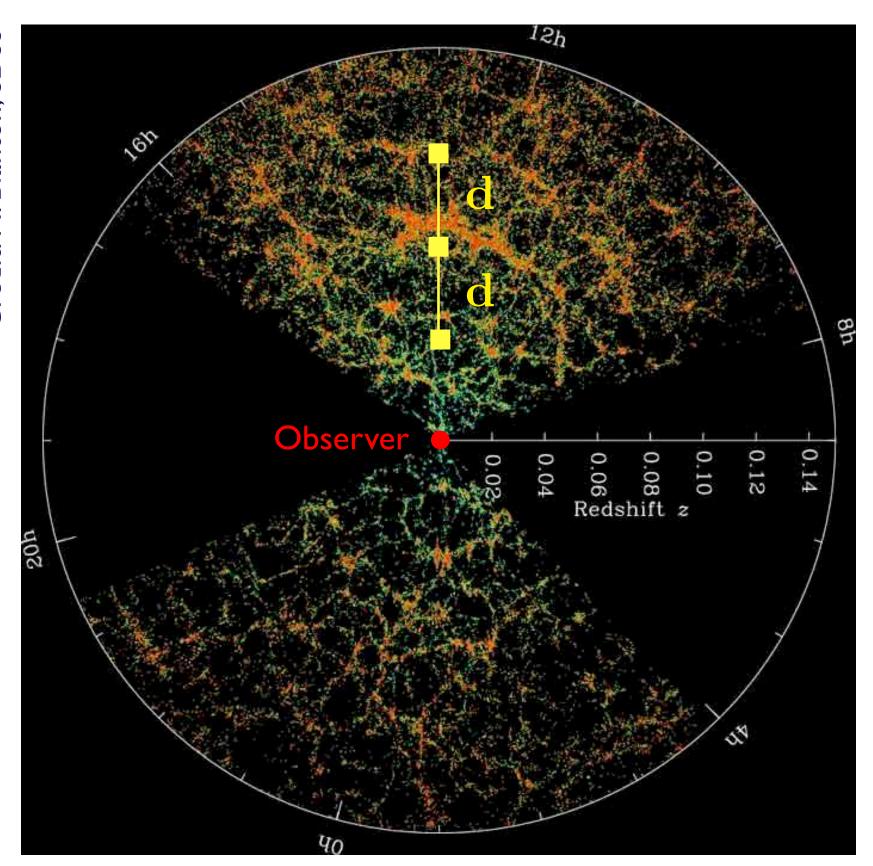
- Matter fluctuations generate isotropic correlations
- Gravitational redshiftbreaks the symmetry



$$\langle \Delta(\mathbf{x})\Delta(\mathbf{x}') \rangle$$
 \triangleright

Different pixels

- Matter fluctuations generate isotropic correlations
- Gravitational redshiftbreaks the symmetry

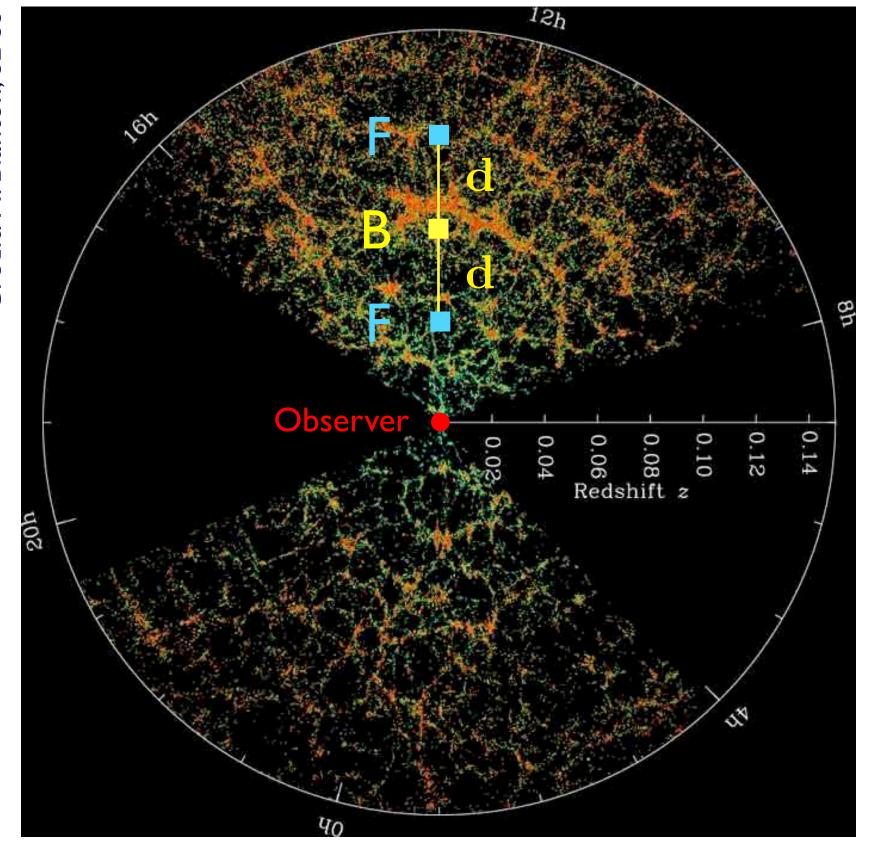


$$\langle \Delta(\mathbf{x})\Delta(\mathbf{x}') \rangle$$
 \triangleright

Different pixels

- Matter fluctuations generate isotropic correlations
- Gravitational redshiftbreaks the symmetry

Two populations

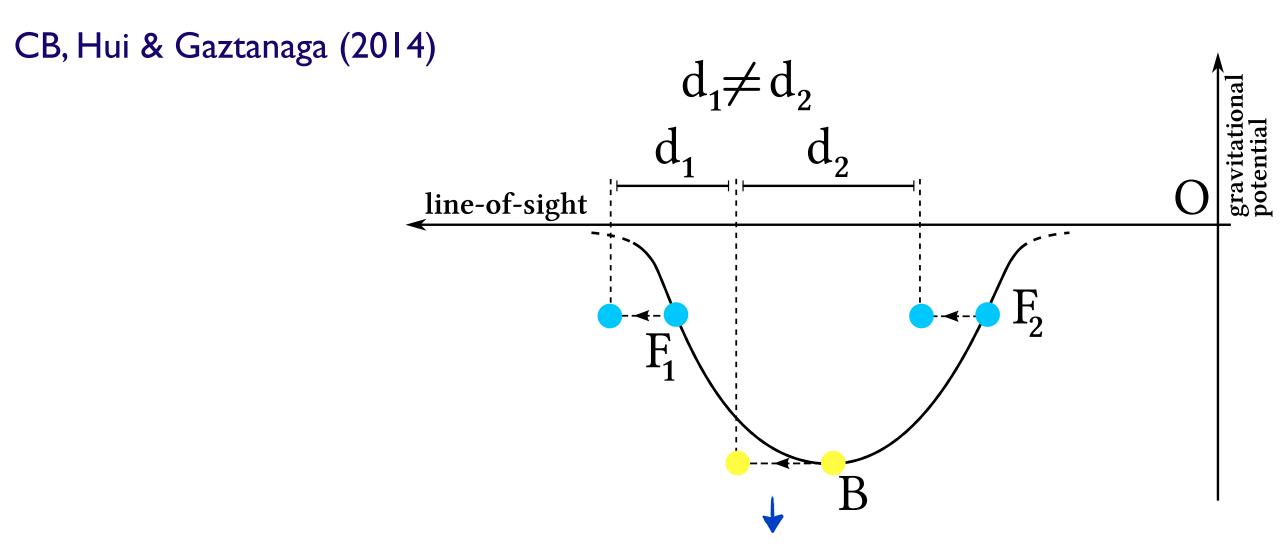


$$\langle \Delta(\mathbf{x})\Delta(\mathbf{x}') \rangle$$
 \triangleright

Different pixels

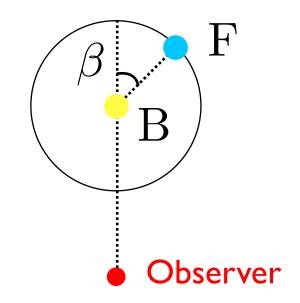
- Matter fluctuations generate isotropic correlations
- Gravitational redshiftbreaks the symmetry

Breaking of symmetry from gravitational redshift

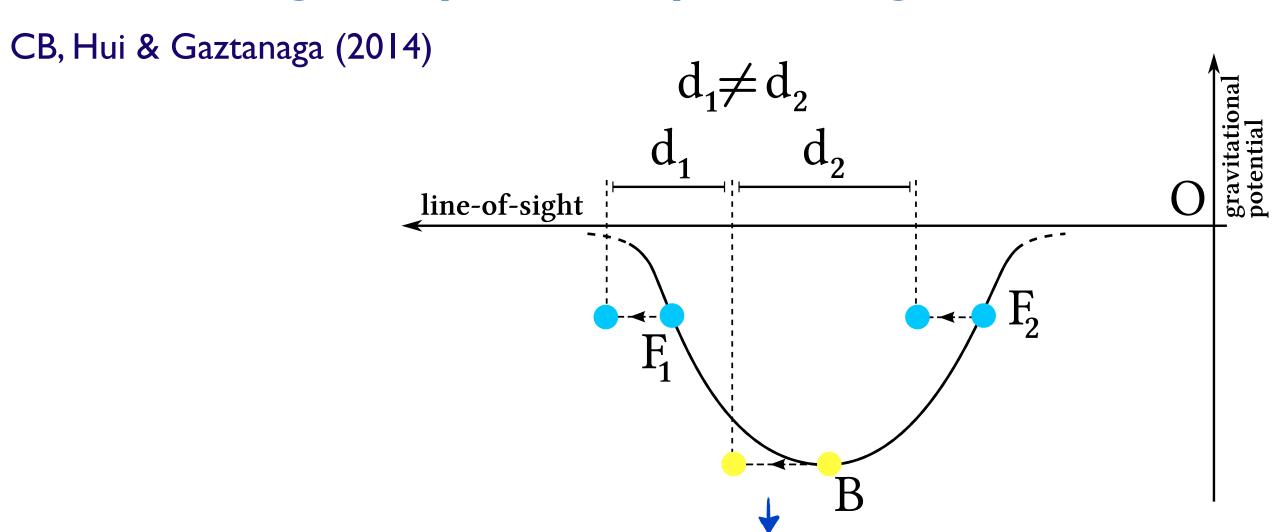


shift in position due to gravitational redshift

Taking all pairs of galaxies into account: dipolar modulation

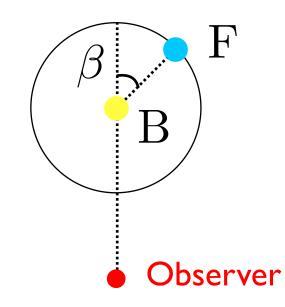


Breaking of symmetry from gravitational redshift



shift in position due to gravitational redshift

Taking all pairs of galaxies into account: dipolar modulation



We can **isolate** the effect by fitting for a dipole

What we really observe

Matter fluctuations

$$\begin{split} \Delta(z,\mathbf{n}) = & b \cdot \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n}) \\ &+ (5s-2) \int_0^r dr' \frac{r-r'}{2rr'} \Delta_{\Omega}(\Phi + \Psi) \\ &+ \left(1 - 5s - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{5s-2}{r\mathcal{H}}\right) \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_r \Psi \\ &+ \frac{2 - 5s}{r} \int_0^r dr' (\Phi + \Psi) + 3\mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s-2)\Phi \end{split}$$

$$+\frac{1}{\mathcal{H}}\dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2-5s}{r\mathcal{H}} + 5s\right) \left[\Psi + \int_0^r dr'(\dot{\Phi} + \dot{\Psi})\right]$$

What we really observe

Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011)

$$\Delta(z, \mathbf{n}) = \frac{1}{\mathcal{H}} \frac{1}{\sqrt{r} \cdot r} \frac{1}{r \cdot r} \frac{1}{\sqrt{r} \cdot r$$

Dipole

$$+ \left(1 - 5s - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{5s - 2}{r\mathcal{H}}\right) \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_r \Psi$$

$$\frac{2-5s}{r}$$

Isolating gravitational redshift

We combine the **dipole**, with measurements of redshift-space distortions (monopole, quadrupole and hexadecapole)

- lacktriangle Dipole lacktriangle Ψ and V
- lacktriangle Redshift-space distortions \longrightarrow V and δ

Forecasts for SKA2

Redshift	0.35	0.45	0.55	0.65	0.75	0.85	0.95
Constraints	23%	24%	28%	33%	40%	48%	60%

$$\delta$$
 From RSD V

From lensing $\,\Phi + \Psi\,$

Test of the weak equivalence principle

$$V' + V - \frac{k}{\mathcal{H}}\Psi = 0$$

$$k^2\Psi = -\frac{3}{2}\mathcal{H}^2\mu\,\delta \qquad \text{Modified Poisson}$$

$$\Phi = \eta \Psi$$

$$\delta$$
 From RSD V

From lensing
$$\,\Phi + \Psi\,$$

 Ψ From the dipole

Test of the weak equivalence principle

$$V' + V - \frac{k}{\mathcal{H}}\Psi = 0$$

$$k^2\Psi=-rac{3}{2}\mathcal{H}^2\mu\,\delta$$
 Modified Poisson

$$\Phi = \eta \Psi$$

$$\delta$$
 From RSD V

From lensing
$$\,\Phi + \Psi\,$$

 Ψ From the dipole

Test of the weak equivalence principle

$$V' + V - \frac{k}{\mathcal{H}} \Psi \neq \mathbf{0}$$

$$k^2\Psi=-rac{3}{2}\mathcal{H}^2\mu\,\delta$$
 Modified Poisson

$$\Phi = \eta \Psi$$

$$\delta$$
 From RSD V

From lensing
$$\,\Phi + \Psi\,$$

 Ψ From the dipole

Test of the weak equivalence principle

$$V'+V-rac{k}{\mathcal{H}}\Psi=-\Theta V+rac{k}{\mathcal{H}}\Gamma\Psi$$
 CB and Fleury (2018) Friction Fifth force

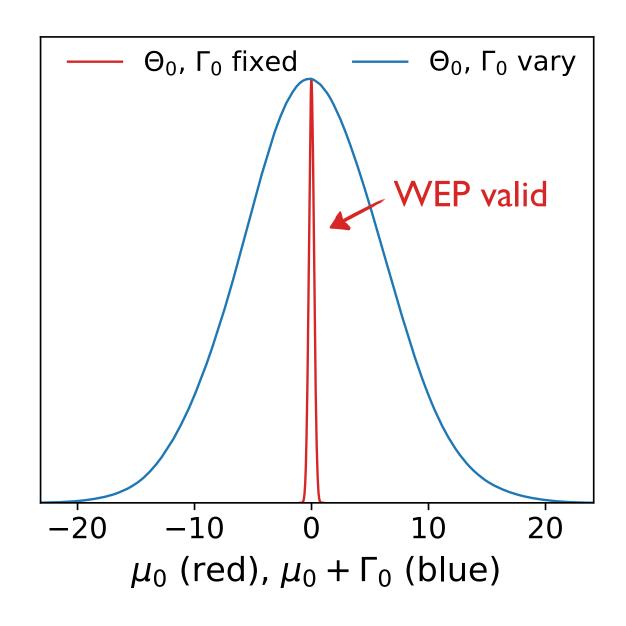
$$k^2\Psi=-rac{3}{2}\mathcal{H}^2\mu\,\delta$$
 Modified Poisson

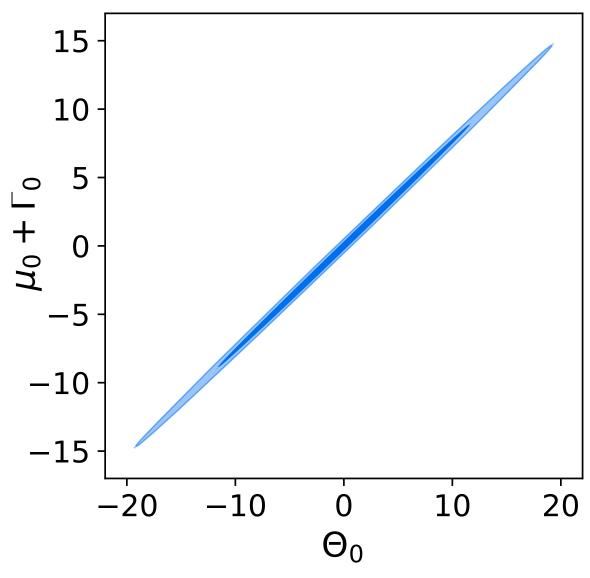
$$\Phi = \eta \Psi$$

Current constraints from SDSS

Castello, Grimm and CB (2022)

With redshift-space distortion only, we cannot test the weak equivalence principle \longrightarrow degeneracies

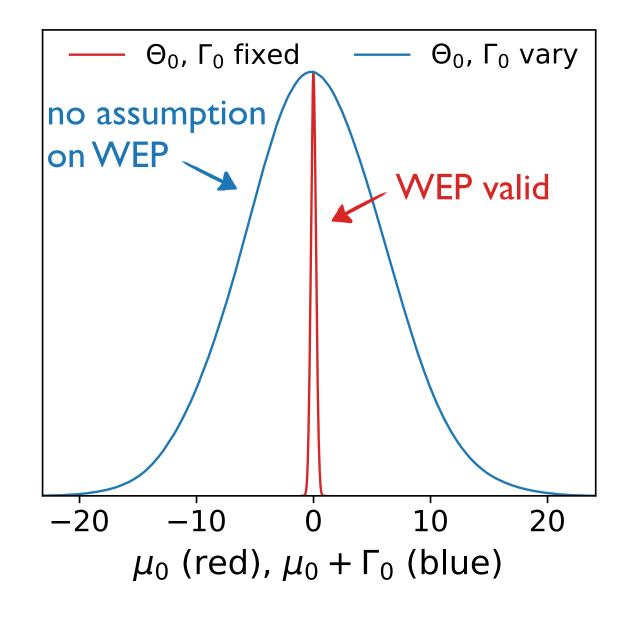


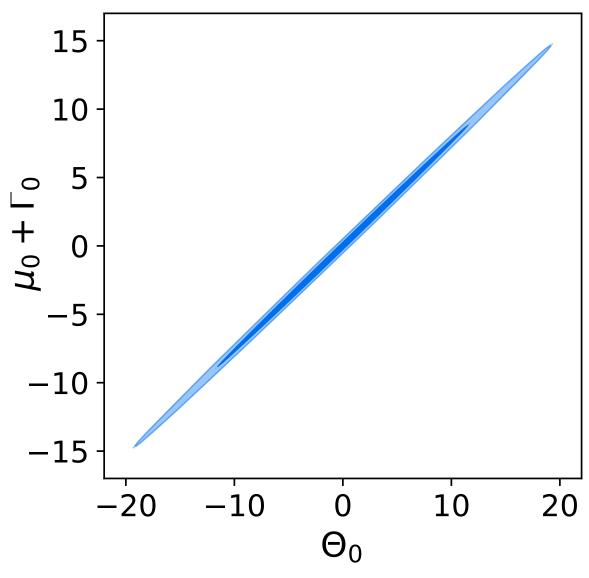


Current constraints from SDSS

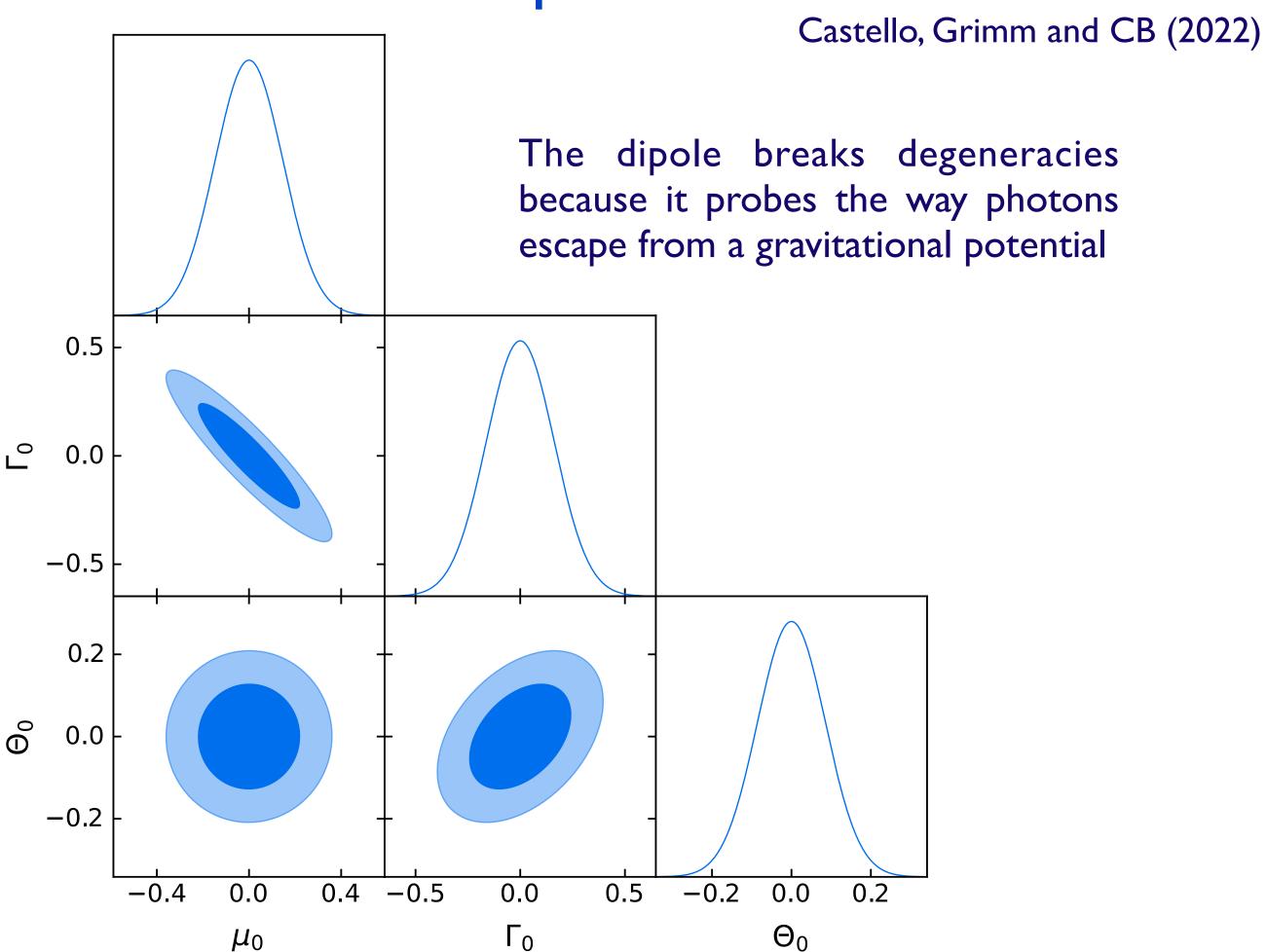
Castello, Grimm and CB (2022)

With redshift-space distortion only, we cannot test the weak equivalence principle \longrightarrow degeneracies





Forecasts with dipole with SKA2



Conclusion

♦ Mapping the distribution of galaxies allows us to measure time distortion at cosmological distance

◆ The isolate the effect, we look for a dipole in the cross-correlation of bright and faint galaxies

◆ Comparing this with redshift-space distortion provides a way of testing the validity of the weak equivalence principle

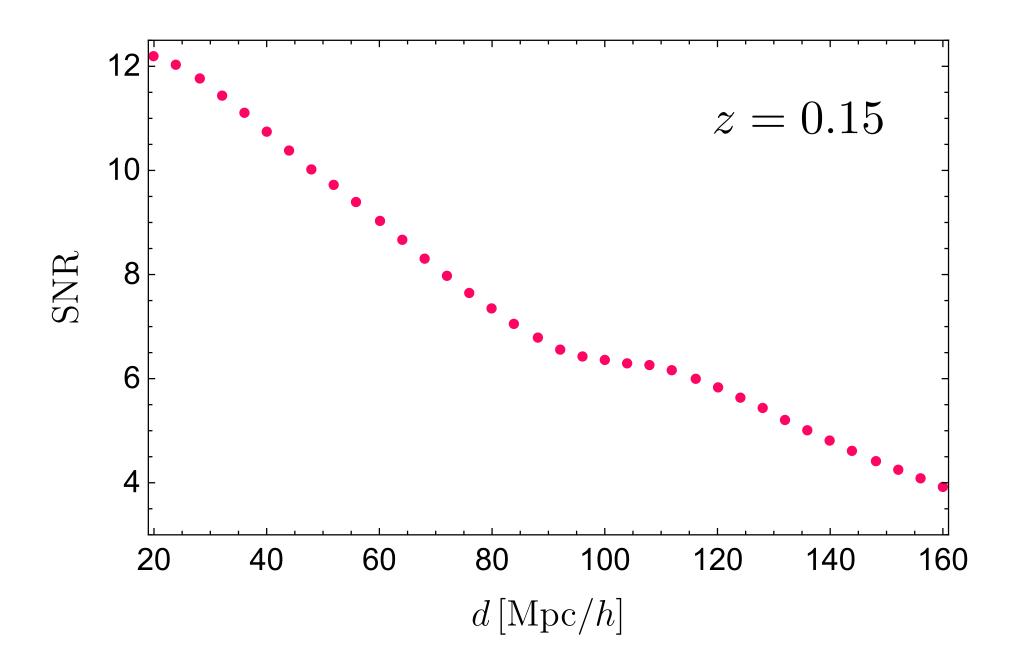
Backup slides

Evolution equation

$$\delta'' + \left(1 + \frac{\mathcal{H}'}{\mathcal{H}} + \Theta\right) \delta' - \frac{3}{2} \frac{\Omega_m}{a} \left(\frac{\mathcal{H}_0}{\mathcal{H}}\right)^2 \mu(\Gamma + 1) \delta = 0$$

Forecasts

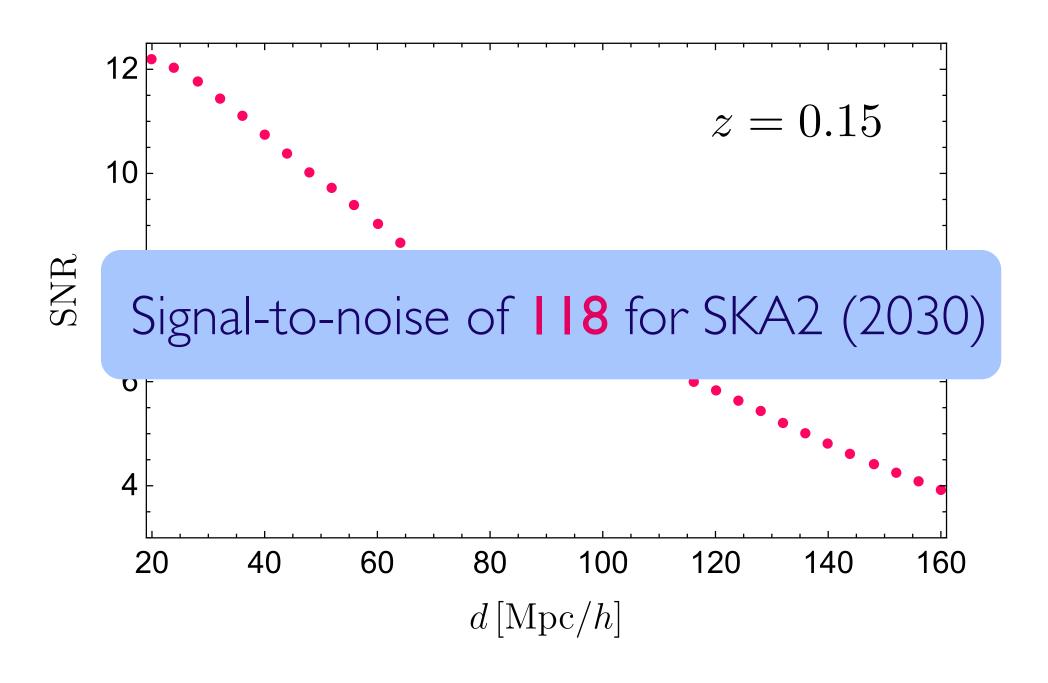
DESI Bright Galaxy Sample: 10 million galaxies at $z \le 0.5$



Cumulative signal-to-noise: 33

Forecasts

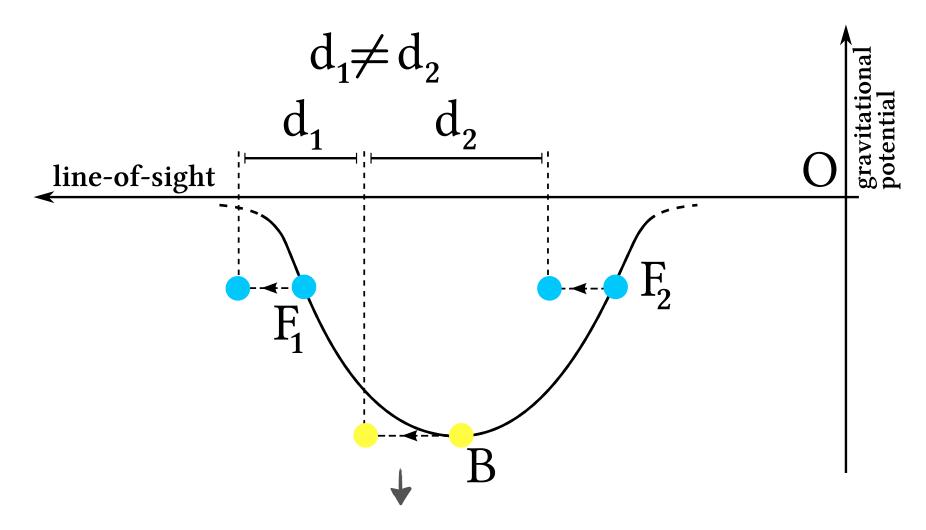
DESI Bright Galaxy Sample: 10 million galaxies at $z \le 0.5$



Cumulative signal-to-noise: 33

Breaking of symmetry from gravitational redshift

CB, Hui & Gaztanaga (2014)



shift in position due to gravitational redshift

$$\xi = \frac{\mathcal{H}}{\mathcal{H}_0} \left(\frac{D_1}{D_{10}} \right)^2 \left[(b_{\rm B} - b_{\rm F}) \left(\frac{2}{r\mathcal{H}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} \right) + 3(s_{\rm F} - s_{\rm B}) f^2 \left(1 - \frac{1}{r\mathcal{H}} \right) \right] + 5(b_{\rm B} s_{\rm F} - b_{\rm F} s_{\rm B}) f \left(1 - \frac{1}{r\mathcal{H}} \right) \right] \nu_1(d) \cos(\beta)$$