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Current status

¢ Mystery to solve: what Is causing the acceleration of our Universe

e Cosmological constant

* Dynamical dark energy

e [heory of gravity

¢ Plethora of new data: DESI, Euclid, SKA, LSST

¢ Goal; test the validity of ACDM and of General Relativity
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Testing General Relativity

What do we want to test?

¢ At late time our Universe Is described as:

Homogeneous and isotropic background + fluctuations

Described by 4 fields

¢ Perturbations in the geometry

gravitational potentials
"4 p" o
ds? = —a?| (1 +20)d? + (1 — 20)d5da’ o’

0p

» density fluctuations y = =

¢ Perturbations in the universe's content: p

peculiar velocity V'
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Testing General Relativity

¢ General Relativity provides relations between the fields

0 Continuity V

Poisson Euler

® Anisotropic stress W

¢ |[deally, we want to measure the 4 fields and compare them

¢ Currently not possible: we have only 3 measurements
ey and V' from the distribution of galaxies

e+ ¥  from gravitational lensing
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Testing General Relativity

¢ General Relativity provides relations between the fields

0 Continuity V
Poisson Euler
b = 1\

dark energy

¢ |[deally, we want to measure the 4 fields and compare them

¢ Currently not possible: we have only 3 measurements
ey and V' from the distribution of galaxies

e+ ¥  from gravitational lensing
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Testing General Relativity

¢ General Relativity provides relations between the fields

0 Continuity V
Poisson Euler
o 7 \
modified gravity

¢ |[deally, we want to measure the 4 fields and compare them

We cannot test 4 relations with 3 observables

ey and V' from the distribution of galaxies

e+ W  from gravitational lensing
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Current methods

¢ Assume that Euler and continuity equations are valid

0 Continuity V
Test Euler
) Test 'l

¢ Measure V.= ¥ compare with ® + U

¢ bvolution equation for growth of structure — constrain Poisson
equation with galaxy clustering

Results consistent with General Relativity

¢ This 1s valid only It Euler and continuity egs. are valid:
restrictive assumption for dark matter
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Equivalence principle

¢ tuler equation encodes the weak equivalence principle

¢ [t tells us that all objects fall In the same way In a
oravitational potential

¢ [t has been precisely tested for standard matter and
bhotons, but not for dark matter

¢ IT we want to test gravity in a model-independent way,
we should relax the assumption that dark matter obeys
the weak equivalence principle
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Equivalence principle

¢ tuler equation encodes the weak equivalence principle

¢ [t tells us that all objects fall In the same way In a
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¢ It has bed VYVe cannot compare ¢ and ¥ er and
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¢ IT we want to test gravity in a model-independent way,
we should relax the assumption that dark matter obeys
the weak equivalence principle.
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Outline

¢ Way out: we can measure the distortion of time W
with future galaxy survey

—» Additional observable to test gravity

¢ Method to measure time distortion with galaxy clustering

¢ Forecasts with SKA

¢ lests of gravity: weak equivalence principle
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Distortion of time

¢ We measure the redshift of photons escaping a
oravitational potential

¢ First test done with white dwarfs in 925

Observer \/\ Gravitational redshift

¢ Here: same test but at cosmological distances, ~50 Mpc

¢ Method: gravitational redshift modifies the observed
clustering of galaxies
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Distortion of time

¢ We measure the redshift of photons escaping a
oravitational potential

¢ First test done with white dwarfs in 925

Observer \/\ Gravitational redshift

Sensitive to time distortion W

¢ Here: same test but at cosmological distances, ~50 Mpc

¢ Method: gravitational redshift modifies the observed
clustering of galaxies
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Credit: M. Blanton, SDSS

Galaxy clustering

¢ Redshift as indicator of distance

Distant galaxies more
affected by expansion

¢ Gravitational redshift is present

_,, slight distortion in maps due
to the gravitational potentials
. . N - N
¢ Fluctuations in number of galaxies A = <
A = Intrinsic distortions + gravitational redshift

¢ How do we isolate gravitational redshift?
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M. Blanton, SDSS

Cred

Correlation function

(A(x)A(x'))
X

Different pixels

¢ Matter fluctuations
generate Isotropic
correlations

ﬁ

¢ Gravitational redshift
breaks the symmetry
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Credit: M. Blanton, SDSS

CB, Hui & Gaztanaga (2014)
Two populations

(A(x)A(x'))
X

Different pixels

¢ Matter fluctuations
generate Isotropic
correlations

¢ Gravitational redshift
breaks the symmetry
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Breaking of symmetry from gravitational redshift
CB, Hui & Gaztanaga (2014)

A
dﬁé dz £

“ d1 dz ” %g

_line-of-sight ] ; Ol&2

, B

shift in position due to gravitational redshift

Taking all pairs of galaxies into account: dipolar modulation

® Observer
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Breaking of symmetry from gravitational redshift
CB, Hui & Gaztanaga (2014)

A
dﬁé dz £

“ d1 dz ” %g

_line-of-sight ] ; Ol&2

, B

shift in position due to gravitational redshift

Taking all pairs of galaxies into account: dipolar modulation

We can isolate the effect
by fitting for a dipole

® Observer
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What we really observe

Yoo et al (2010)
M fl : CB and Durrer (201 1)
atter fluctuations Challinor and Lewis (2011)
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What we really observe

Yoo et al (2010)
CB and Durrer (201 1)
Challinor and Lewis (2011)

Dipole

Hhs — 2 1 . 1
V' _V' _87"@
n+H n+H
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Sobral-Blanco and CB (2022)

Isolating gravitational redshift

We combine the dipole, wit
distortions (monopole, quad

¢ Dipole & ¥ and V

N

~U

measurements of redshift-space

hole and hexadecapole)

¢ Redshift-space distortions — V and ¢

Forecasts for SKA2

Redshift 0.35 0.45 0.55 0.65 0.75 0.85 0.95

23% 24% 28% 33% 40% 48% 60%
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Testing gravity

) From RSD V

From lensing & + W

Test of the weak equivalence principle

k

3
kU = ——H%1,6  Modified Poisson
2 — Standard

b =nw Non-zero anisotropic stress
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Testing gravity

) From RSD V

From lensing & + W WU From the dipole

Test of the weak equivalence principle

k
VIi4V — =U+£0
FV - U
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Testing gravity

0 From RSD V
From lensing & + W WU From the dipole
Test of the weak equivalence principle
, k k
VitV —-——VU=-0V+-1U CB and Fleury (2018)
ey T
Friction Fifth force

3
kU = ——H%1,6  Modified Poisson
2 — Standard

b =nw Non-zero anisotropic stress
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Current constraints from SDSS
Castello, Grimm and CB (2022)

With redshift-space distortion only, we cannot test
the weak equivalence principle —» degeneracies
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Current constraints from SDSS
Castello, Grimm and CB (2022)

With redshift-space distortion only, we cannot test
the weak equivalence principle —» degeneracies
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Forecasts with dipole with SKA2

0.5
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Castello, Grimm and CB (2022)

The dipole breaks degeneracies
because it probes the way photons
escape from a gravitational potential
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¢ [ he isolate -

Cross-correla

¢ Comparing this with redshi

‘loN O

Conclusion

¢ Mapping the distribution of galaxies allows us to
measure time distortion at cosmological distance

he effect, we look for a dipole In the

" bright and faint galaxies

P

-space distortion

provides a way of testing the validity of the weak
equivalence principle
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Backup slides

Planck 2022 Camille Bonvin p. 36/35



Evolution equation
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CB, Tutusaus, Adamek, Lepori, Fosalba, Schulz, in progress

Forecasts

DESI Bright Galaxy Sample: 10 million galaxies at z < 0.5
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Cumulative signal-to-noise: 33
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CB, Tutusaus, Adamek, Lepori, Fosalba, Schulz, in progress

Forecasts

DESI Bright Galaxy Sample: 10 million galaxies at z < 0.5
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Breaking of symmetry from gravitational redshift
CB, Hui & Gaztanaga (2014)

>
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{ B

shift in position due to gravitational redshift

‘= 3% (ll?)llo>2 [(bB ~ br) (73}{ ’ 77:2) + 3(sp — sB) [f* (1 T;)

5msy — besa)f (1= 2. ) [ () cos(s)
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