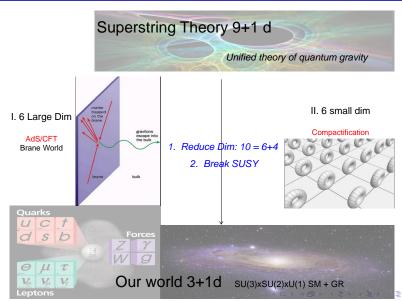
Universes as Big-Data: Strings, Geometry & AI


YANG-HUI HE

London Institute for Mathematical Sciences, Royal Institution
Dept of Mathematics, City, University of London
Merton College, University of Oxford
School of Physics, NanKai University

Planck 2022, Paris

String Phenomenology

Enriching the Maths/Physics Dialogue

- Alg./diff. Geometry/topology Rep. Theo: the right language for physics
 - Gravity ∼ Ricci 2-form of Tangent bundles;
 - ullet Elementary Particles \sim irred reps of the Lorentz group and sections of bundles with Lie structure group; Interactions \sim Tensor products of sections . . .
 - String theory: brain-child of gauge-gravity geometrization tradition
- A new exciting era for synergy with (pure & computational) geometry, group theory, combinatorics, number theory: Sage, M2, GAP, LMFDB, GrDB are becoming indispensible tools for physicists
- Interdisciplinary enterprise: cross-fertilisation of particle/string theory,
 phenomenology, pure mathematics, computer algorithms, data-bases, . . .

Vacuum Degeneracy

Perhaps the biggest theoretical challenge to string theory:

selection criterion??? metric on the landscape???

- Douglas (2003): Statistics of String vacua
- Kachru-Kallosh-Linde-Trivedi (2003): type II/CY estimates of 10^{500}
- Taylor-YN Wang (2015-7): F-theory estimates 10^{3000} to 10^{10^5}
- Basic Reason:

Algebraic Geometry \sim Combinatorial Geometry \sim Exponential Growth in dim

The most famous Calabi-Yau dataset

Searching the Standard Model

SM places some constraints but still not enough:

- Braun-YHH-Ovrut; Bouchard-Cvetic-Donagi (2005): exact MSSM particles
- \bullet Gmeiner-Blumenhagen-Honecker-Lüst-Weigand (2005):1 in 10^9 in D-brane MSSM modles
- Candelas-de la Ossa-YHH-Szendroi (2007): Triadophilia ⇒ "des res"?
- ullet Anderson-Gray-Lukas-Palti (2012-3): Het line bundle MSSM: 200 in 10^{10}

Recent estimates

- Constatin-YHH-Lukas; Deen-YHH-SJ Lee-Lukas (2018-9) MSSM from heterotic line bundles: 10^{23} from CICYs; 10^{723} from KS
- ullet Cvetic-Halverson-Lin-Liu-Tian (2019): 10^{15} F-theory MSSMs

The Geometric Origin of our Universe

- Each geometry X gives a 4-D universe
 - ullet The geometry of X determines the physics of the 4-D world
 - ullet particles and interactions \sim cohomology theory; masses \sim metric; Yukawa \sim Triple intersections/integral of forms over X

Ubi materia, ibi geometria

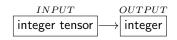
- Johannes Kepler (1571-1630)

- Our Universe:

 (1) probabilistic/anthropic?
 (2) Sui generis/selection rule?
 (3) one of multi-verse?

 - cf. Exo-planet/Habitable Zone search

Recasting Geometry


A typical calculation:

- Key to computational Algebraic Geometry: Gröbner basis, double-exponential complexity (unlike Gaussian elimination which is generalizes)
- [YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017;
 (cf. Feature in Science, Aug, vol 365 issue 6452, 2019): think of it as an image processing problem

A Wild Question: "deep-learn the landscape?"

• Typical Problem in String Theory/Algebraic Geometry:

Experimentally, it seems so for many situations in geometry and beyond.

- Initially tried a shallow MLP on CICY dataset
- improved over the years: Bull-YHH-Mishra-Jejjala, Krippendorf-Syvaeri , Erban-Finotello, Lukas, Constantin, Schneider, Larfors, ...> 99.96% accuracy

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714);

q.v. Krefl-Seong (1706.03346); Ruehle (1706.07024);

Carifio-Halverson-Krioukov-Nelson (1707.00655)

Of course, we are 30 years behind experimentalists!

CERN: 1990, first ML + HEP seminar series \sim same

time as first CY data!

Sophia: Hanson Robotics HongKong

- Beginning of String_Data
- How can ML and modern data-science help with the vacuum degeneracy problem??
- Meanwhile ... Sophia becomes a "human" citizen (in Saudi Arabia)

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714); q.v. Krefl-Seong (1706.03346); Ruehle (1706.07024); Carifio-Halverson-Krioukov-Nelson (1707.00655)

Of course, we are 30 years behind experimentalists!

CERN: 1990, first ML + HEP seminar series \sim same

time as first CY data!

Sophia: Hanson Robotics HongKong

- Beginning of String_Data
- How can ML and modern data-science help with the vacuum degeneracy problem??
- Meanwhile . . . Sophia becomes a "human" citizen (in Saudi Arabia)

Progress in String Theory

```
Major International Annual Conference Series
```

- 1986- First "Strings" Conference
- 2002- First "StringPheno" Conference
- 2006 2010 String Vacuum Project (NSF)
 - 2011- First "String-Math" Conference
 - 2014- First String/Theoretical Physics Session in SIAM Conference
 - 2017- First "String-Data" Conference

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?
- Since 1997 with Jiakang Bao, Elli Hayes, Ed Hirst; K. Bull, J. Ipina, T. Peterken,
 - A. Ashmore, B. Ovrut, A. Lukas, C. Mishra, V. Jejjala, ... ML different data from alg geo, diff geo, number thy, graph thy, combinatorics, rep thy, group thy, ...

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?
- Since 1997 with Jiakang Bao, Elli Hayes, Ed Hirst; K. Bull, J. Ipina, T. Peterken,
 - A. Ashmore, B. Ovrut, A. Lukas, C. Mishra, V. Jejjala, ... ML different data from alg geo, diff geo, number thy, graph thy, combinatorics, rep thy, group thy, ...

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?
- Since 1997 with Jiakang Bao, Elli Hayes, Ed Hirst; K. Bull, J. Ipina, T. Peterken,
 - S. Majumdar, L. Calmon, Y. Xiao, ... and friends S-T. Yau, M. Kim, S. Lal, A. Kaspryzyk,
 A. Ashmore, B. Ovrut, A. Lukas, C. Mishra, V. Jejjala, ... ML different data from alg
 geo, diff geo, number thy, graph thy, combinatorics, rep thy, group thy, ...

e.g.
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2}$$

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?
- Since 1997 with Jiakang Bao, Elli Hayes, Ed Hirst; K. Bull, J. Ipina, T. Peterken,
 - S. Majumdar, L. Calmon, Y. Xiao, ... and friends S-T. Yau, M. Kim, S. Lal, A. Kaspryzyk,
 A. Ashmore, B. Ovrut, A. Lukas, C. Mishra, V. Jejjala, ... ML different data from alg
 geo, diff geo, number thy, graph thy, combinatorics, rep thy, group thy, ...

Clearly useful for maths and physics

- Conjecture Formulation e.g.,
 - '19 YHH-Kim: separating hyperplane simple/non-simple groups; open
 - '19 Brodie-Constantin-Lukas: exact formulae for cohomo surf.; proved.
 - '20 YHH-Lee-Oliver: L-coefs and integer pt./torsion on ell; proved.
 - '20 Craven-Jejjala-Par: Jones poly best-fit function; open
 - '22 DeepMind Collab bounds on volume conjecture for knots
 - . . .
- Speed up & Improve Accuracies e.g.,
 - computing/estimating (top.inv., charges, etc) MUCH FASTER
 - '19 Ashmore-YHH-Ovrut: speed up Donaldson alg@CY metric 10-100
 - '20 Douglas et al., Anderson et al. accuracy improvement on Donaldson 10-100 times

An Inherent Hierarchy?

- ML the structure of mathematics: YHH 2101.06317
- In decreasing precision/increasing difficulty:

```
\begin{array}{ccc} & & & & & \\ & \text{string theory} \to & & \text{algebraic geometry over } \mathbb{C} \sim \text{arithmetic geometry} \\ & & & \text{algebra} \\ & & \text{string theory} \to & & \text{combinatorics} \\ & & & & \text{analytic number theory} \end{array}
```

Launching in 2023

IJDSMS

Calling for Papers

Editor-in-Chief Yang-Hui He

London Institute for Mathematical Sciences

c's Merton College, University of Oxford

& Merton College, University of Oxford email: hey@maths.ox.ac.uk

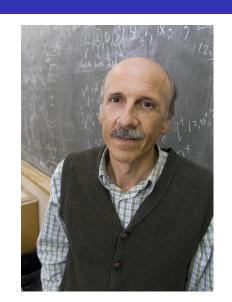
More Information:

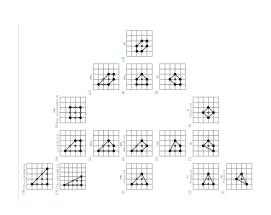
https://www.worldscientific.com/worldscinet/ijdsms

INTERNATIONAL JOURNAL OF DATA SCIENCE IN THE MATHEMATICAL SCIENCES

Editor-in-Chief

Prof. Yang-Hui He


LIVS, Royal Institution & Menton College, Oxford



Merci!!

A toast to Prof. Ignatios Antoniadis

Borisov-Batyrev & Kreuzer-Skarke Back to Landscape

- Reflexive Polyhedra → CY: anticanonical hypersurface in toric variety from Δ
- Dim 2: 16 up to $SL(2; \mathbb{Z})$ (Italian School 1890s)
- Dim 3: 4139 up to $SL(3;\mathbb{Z})$ (KS, 1999)
- Dim 4: 473800776 up to $SL(4;\mathbb{Z})$ (KS, 2000)
- Dim > 4: Open ??

Altman-Carifio-Halverson-Nelson (2018): estimated 10^{10^4} triangulations

Altman-Gray-YHH-Jejjala-Nelson (2014): brute-force: $\sim 10^6$ up to $h^{1,1}=6$

The Proper Way $\mathcal{O}(e^{e^d})$

• Recall Hodge decomposition $H^{p,q}(X) \simeq H^q(X, \wedge^p T^{\star}X) \leadsto$

$$H^{1,1}(X) = H^1(X, T_X^\star), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^\star) \simeq H^1(X, T_X)$$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

$$0 \rightarrow H^{0}(X,T_{X}) \xrightarrow{0} H^{0}(X,T_{A}|_{X}) \rightarrow H^{0}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{1}(X,T_{X}) \xrightarrow{d} H^{1}(X,T_{A}|_{X}) \rightarrow H^{1}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{2}(X,T_{X}) \rightarrow \dots$$

ullet Need to compute ${\sf Rk}(d)$, cohomology and $H^i(X,T_A|_X)$ (Cf. Hübsch)

4 ロ ト 4 団 ト 4 団 ト 4 団 ト ラ ラ 9 9 9

The Neural Network Approach

- Bijection from 1234567890 to $\{1,2,...,9,0\}$?
- Take large sample, take a few hundred thousand (e.g. NIST database)

hidden layers
output layer

Universal Approximation Theorems

- Large Depth Thm: (Cybenko-Hornik) For every continuous function $f:\mathbb{R}^d\to\mathbb{R}^D$, every compact subset $K\subset\mathbb{R}^d$, and every $\epsilon>0$, there exists a continuous function $f_\epsilon:\mathbb{R}^d\to\mathbb{R}^D$ such that $f_\epsilon=W_2(\sigma(W_1))$, where σ is a fixed continuous function, $W_{1,2}$ affine transformations and composition appropriately defined, so that $\sup_{x\in K}|f(x)-f_\epsilon(x)|<\epsilon.$
- Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output neuron and an arbitrary number of hidden layers each with n+m+2 neurons, such that every hidden neuron has activation function φ and every output neuron has activation function the identity. Then, given any vector-valued function f from a compact subset $K\subset \mathbb{R}^m$, and any $\epsilon>0$, one can find an F, a NN of the above type, so that $|F(x)-f(x)|<\epsilon$ for all $x\in K$.
 - ReLU Thm: (Hanin) For any Lebesgue-integral function $f:\mathbb{R}^n \to \mathbb{R}$ and any $\epsilon>0$, there exists a fully connected ReLU NN F with width of all layers less than n+4 such that $\int_{\mathbb{R}^n} |f(x)-F(x)| dx < \epsilon.$

Back to NN@Alg Geo