Axion-Like-Particle dark matter from kinetic fragmentation.

Géraldine SERVANT DESY/U.Hamburg

Planck 2022 Conference June 1st 2022

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

This talk .

Based on collaboration with

Cem Eroncel, Philip Sørensen, Ryosuke Sato

to appear

as well as

Peera Simakachorn Yann Gouttenoire

ArXiv: 2108.10328 + 2111.01150

Key message: ALP DM window largely opened up with a spinning axion.

Axion-Like-Particles (ALPs).

Consider complex scalar field

$$\Phi = \phi e^{i\theta}$$

charged under anomalous U(1) global symmetry (Peccei-Quinn symmetry)

Spontaneously broken at scale fa

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2$$

$$\langle \boldsymbol{\varphi} \rangle = f_a / \sqrt{2}$$

Axion as Goldstone boson

 $\theta \rightarrow \theta + \text{const.}$

 $\theta = a/f_a$

ALPs.

Non-perturbative effects at energy $\Lambda_b \ll f_a$ break the shift symmetry and generate a potential/mass for the axion

$$\mathbf{V} = m_{\mathbf{a}}^2(T) f_{\mathbf{a}}^2 \left[1 - \cos\left(\theta\right) \right]$$

 $m_a = \Lambda_b^2 / f_a$

QCD axion

Generic ALP

m_a²f_a² ≈ (76 MeV)⁴

ma and fa : free parameters

The hunt for axions.

Mainly through Axion-photon coupling

If long-lived: Dark Matter candidate

The Axion-Like-Particle (ALP) parameter space.

If axions are given an interaction to photons then a long list of constraints from ALP searches apply

 $\frac{f_{\gamma}}{f_a} \approx 0.5 \times 10^3$ **assuming KSVZ-like coupling**

The hunt for axions.

Which of these axions can make Dark Matter ?

Axions from the misalignment mechanism.

Start with ALP lagrangian
$$\mathcal{L} = \frac{1}{2}g^{\mu\nu}\partial_{\mu}a\partial_{\nu}a - V(\phi) = \frac{1}{2}g^{\mu\nu}\partial_{\mu}a\partial_{\nu}a - m^{2}(T)f^{2}\left[1 - \cos\left(\frac{a}{f}\right)\right].$$

Define homogeneous zero-mode $\overline{\mathbf{a}}(t) \equiv f\Theta(t)$

Neglecting fluctuations, it satisfies $\ddot{\Theta} + 3H\dot{\Theta} + m_a^2(T)\sin(\Theta) = 0$,

With initial conditions:

DESY.

$$\Theta(t_i) = \Theta_i$$
, $\dot{\Theta}(t_i) = 0$, standard assumption

>
$$m_a \ll 3H \iff \rho_a \propto a^0$$
 (Frozen)
> $m_a \gg 3H \iff \rho_a \propto a^{-3}$ (Oscillating)

-> standard misalignement mechanism

For
$$\Theta_i \sim 1$$
 $\rho_{\rm DM} \sim \rho_{osc} \left(\frac{a_{osc}}{a_0}\right)^3 \sim m_a^2 f_a^2 \left(\frac{T_0}{T_{osc}}\right)^3$
 $T_{osc} \sim \sqrt{m_a M_{Pl}}$

10

Pre- and post-inflationary scenarios.

Post-inflationary scenario

- Different initial angle in each Hubble patch.
- Inhomogeneous including topological defects.

Pre-inflationary scenario (This work)

- Random initial angle in the observable universe.
- Initially homogeneous w/o topological defects.

Standard versus kinetic Misalignment.

ALP DM parameter space.

(KSVZ-like coupling)

 $g_{ heta\gamma} = (lpha_{ extsf{em}}/2\pi)(1.92/f)$)

ALP DM parameter space.

Constant axion mass

Conventional misalignement makes too little DM for low fa

A way out: switch on initial velocity for the axion

Case I: $\psi_{ini} \gg J_a$

Kinetic misalignment.

$$H_a^{\rm osc} \ll m_a$$
$$\dot{\theta}^2 f_a^2 \propto a^{-6} \qquad \dot{\theta} \simeq m_a$$

DESY.

-> ALP can be DM for low fa

Co, Harigaya et al '19 Chang, Cui'19

$$\frac{n_a}{s} \bigg|_0 \simeq \frac{n_\theta}{s} \bigg|_{\rm KD} \equiv \frac{f_a^2 \dot{\theta}_{\rm KD}}{s_{\rm KD}} \simeq \frac{f_a}{E_{\rm KD}} e^{3N_{\rm KD}/2}$$

Axion cosmology.

"Usual" story:

Starts at $<\phi>=0$

Studies axion cosmology ignoring the radial mode

Alternative:

Starts at $\langle \phi \rangle \gg f_a$

Radial mode /axion interplay

How did the axion acquire a kick?

If PQ symmetry is broken explicitly at high energies —> mexican hat potential is tilted

If radial mode of PQ field starts at large VEV, the angular mode gets a large kick in the early universe

With initial conditions:

Delayed axion oscillations !

-> kinetic misalignment mechanism [Co, Harigaya, Hall'19

1910.14152 2004.0062918

ALP DM parameter space.

Axion fragmentation .

Axion Fragmentation.

Not considered in usual axion phenomenology with oscillations around one minimum: Fragmentation suppressed unless the field starts very close to the top of the potential ("large misalignment mechanism") or for specific potentials with more than one cosine -> parametric resonance.

> Greene, Kofman, Starobinsky, hep-ph/9808477 Chatrchyan et al, 1903.03116, 2004.07844 Arvanitaki et al, 1909.11665

However, becomes very relevant when field crosses many wiggles, with interesting implications, e.g. for the relaxion mechanism, but also as a new axion Dark Matter production mechanism.

> Chatrchyan et al, 1903.03116, 2004.07844 Fonseca, Morgante, Sato, Servant'19 Morgante et al, 2109.13823

This work (Eroncel et al'22, to appear):

Generalization (fragmentation before and after trapping + detailed application to DM)

ALP fluctuations.

 Even in the pre-inflationary scenario, ALP field has some fluctuations on top of the homogeneous background, which can be described by the mode functions in the Fourier space.

$$\theta(t,\mathbf{x}) = \Theta(t) + \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \theta_k e^{i\vec{\mathbf{k}}\cdot\vec{\mathbf{x}}} + \mathrm{h.c.}$$

These fluctuations are seeded by adiabatic and/or isocurvature perturbations:

Adiabatic perturbations (This work)

- Due to the energy density perturbations of the dominating component, unavoidable.
- Initial conditions in the super-horizon limit:

$$\frac{\delta_i}{1+w_i} = \frac{\delta_j}{1+w_j}$$

Isocurvature perturbations

• If ALPs exist during inflation and are light $m \ll H_{inf}$, they pick up quantum fluctuations:

$$\delta heta \sim rac{H_{
m inf}}{2\pi f_{
m inf}}$$

• Can be avoided/suppressed if ALP has a large mass during inflation, or $f_{inf} \gg f_{today}$.

ALP fluctuations

Even though the fluctuations are small initially, they can be enhanced exponentially later via parametric resonance yielding to fragmentation.

•

•

In the case of efficient fragmentation, all the energy of the homogeneous mode can be transferred to the fluctuations. [Fonseca et al. 1911.08472; Morgante et al. 2109.13823]

Axion fragmentation in kinetic misalignment.

Axion fragmentation in kinetic misalignment.

Axion fragmentation in kinetic misalignment.

Fragmentation regions in ALP parameter space.

Constant axion mass

Fragmentation regions in ALP parameter space.

Constant axion mass

Temperature – dependent axion mass with $\gamma = 8$

Experimental reach.

Observational prospects ?

Lifetime of a fluctuation .

Lifetime of a fluctuation .

Observational tests: compact axion halos.

axion fragmentation-> structure formation enhancement

Scale density of axion compact structures

was studied in the context of large misalignment scenario in [Arvanitaki et al'19] Different in the context of axion kinetic fragmentation: Eroncel et al'22, to appear

Concrete UV realizations

Spinning axion .

Requirements

1. U(1)-symmetric (quadratic) potential with spontaneous symmetry-breaking minimum

3. Explicit U(1)-breaking term (wiggle for angular velocity) 2. Large initial scalar VEV

4. Damping of radial motion

Ingredients 1 & 2 : scalar potential

$$V(\Phi) = m_r^2 |\Phi|^2 \left[\log\left(\frac{|\Phi|^2}{f_a^2}\right) - 1 \right] + \Lambda_b^4 \left[\left(\frac{\Phi}{M_{\rm Pl}}\right)^l + \left(\frac{\Phi^{\dagger}}{M_{\rm Pl}}\right)^l \right] + \frac{\lambda^2}{M_{\rm Pl}^{2l-6}} |\Phi|^{2l-2}$$

 $\propto \cos(l\theta)$

explicit breaking term

U(1)-conserving potential (quadratic) with a minimum f_a

(motivated by supersymmetric setups) (e.g. U(1) is not exact at high scales.)

stabilization

Ingredient 3 : large initial VEV $\phi_{
m ini}$

Driven away from $\phi = 0$ at early times $(H \gg m_r)$ by a negative Hubble mass $V_H(\Phi, H) \supset -cH^2 |\Phi|^2$ (e.g. Dine, Randall, Thomas, 1995)

Kination from a spinning axion.

circle @ $\phi = f_a$

The conserved U(1)-charge is d = -3

 $\frac{d}{dt}(a^3\phi^2\dot{\theta}) = 0 \implies \dot{\theta} \propto a^{-3}$

in rotation Kinetic energy dominates $\rho_{\Phi} = KE \propto \dot{\theta}^2 \propto a^{-6}$

and behaves as kination.

Impact of kination on Inflationary Gravitational Waves.

Enhancement of the primordial inflationary gravitational-wave spectrum by a kination era.

Irreducible GW bgd from quantum fluctuations during inflation .

Spectral distorsions of the pfiltalordial inflationary GW: a hint on the cosmological history.

Kination-enhanced GW signal from primordial inflation.

Model-independent predictions.

Peak frequency:
$$f_{\text{peak}} \approx 10 \text{ Hz} \left(\frac{E_{\text{KD}}}{10^8 \text{ GeV}}\right) \left[\frac{\exp(N_{\text{KD}}/2)}{10}\right]$$

Peak amplitude: $\Omega_{\text{peak}}h^2 \approx 10^{-12} \left(\frac{E_{\text{inf}}}{1.6 \times 10^{16} \text{ GeV}}\right)^4 \left[\frac{\exp(2N_{\text{KD}})}{10^4}\right]$

Gravitational Waves and Axion Dark Matter.

QCD Axion Dark Matter.

[Fonseca, Morgante, Sato, Servant, '19]

[Eröncel, Sato, Servant, Sørensen, soon!]

via kinetic misalignment & axion fragmentation

[Co, Harigaya, Hall, '19]

[Chang, Cui, '19]

$$\left. \frac{n_a}{s} \right|_0 \simeq \frac{f_a^2 \dot{\theta}}{s_{\rm KD}} \simeq \frac{f_a}{E_{\rm KD}} e^{3N_{\rm KD}/2}$$

[Gouttenoire, Servant, **PS**, 2111.01150]

Peak amplitude $\Omega_{GW,KD}h^2$ GW peak & axion DM abundance LISA 10⁻⁹ [ma $f_{\text{peak}} \approx 21 \text{ Hz} \left(\frac{\text{GeV}}{\sqrt{m_a f_a}}\right)^{2/3} \left(\frac{E_{\text{KD}}}{10^9 \text{ GeV}}\right)^{4/3} \left(\frac{\Omega_{a,0}}{\Omega_{\text{DM},0}}\right)^{1/3}$ ALP DM: V **SKA** 5 yrs BB(Generic 10⁻¹³ 10 yrs QCD $\Omega_{\text{peak}}h^2 \approx 10^{-18} \left(\frac{f_{\text{KD}}}{\text{Hz}}\right) \left(\frac{E_{\text{inf}}}{10^{16} \text{ GeV}}\right)^4 \left(\frac{\text{GeV}}{\sqrt{m_a f_a}}\right)$ axion a 10⁻⁸ 10^{-4} 10^{4} Peak frequency $f_{\rm KD}$ [Hz]

The conventional QCD axion DM cannot be observed at planned experiments, except BBO and require ultra-high frequency GW experiments.

Observable signals for generic ALP DM and **QCD** axion DM with lighter mass, e.g., the \mathbb{Z}_N -axion.

[Hook, '18] & [Di Luzio, Gavela, Quilez, Ringwald, '21]

Gravitational Waves and Axion Dark Matter.

If the axion is Dark Matter:

[Gouttenoire,GS, Simakachorn 2111.01150]

Detectability of rotating axion models.

Impact of kination on Gravitational Waves from Cosmic Strings.

Kination-enhanced GW from local cosmic strings.

Peak frequency:

$$f_{\rm KD} \simeq \begin{cases} (1.3 \times 10^3 \,\text{Hz}) \left(\frac{0.1 \times 50 \times 10^{-11}}{\alpha \Gamma G \mu}\right)^{1/2} \left(\frac{E_{\rm KD}}{10^5 \,\text{GeV}}\right) & \text{for } N_{\rm KD} < \frac{1}{3} \log \left(\frac{\alpha}{2\Gamma G \mu}\right), \\ (6.1 \times 10^2 \,\text{Hz}) \left(\frac{0.1}{\alpha}\right)^{2/3} \left(\frac{50 \times 10^{-11}}{\Gamma G \mu}\right)^{1/3} \left(\frac{E_{\rm KD}}{10^5 \,\text{GeV}}\right) \left[\frac{\exp(N_{\rm KD}/2)}{10}\right] & \text{for } N_{\rm KD} > \frac{1}{3} \log \left(\frac{\alpha}{2\Gamma G \mu}\right), \end{cases}$$

Kination-enhanced GW from local cosmic strings.

GW from global strings.

Peak frequency: $f_{\text{KD}} \simeq (0.916 \text{ Hz}) \left(\frac{0.1}{\alpha}\right) \left(\frac{E_{\text{KD}}}{10^5 \text{ GeV}}\right) \left[\frac{\exp(N_{\text{KD}}/2)}{10}\right],$

GW from primordial inflation + local cosmic strings.

 $E_{\rm KD} = 1 \text{ TeV}, G\mu = 10^{-15}$

 $E_{\rm KD} = 10^8 \,\,{\rm GeV}, \,{\rm G}\mu = 10^{-15}$

GW from primordial inflation + global cosmic strings.

-lobal-st

[Gouttenoire,GS, Simakachorn 2111.01150]

Conclusion.

- Kinetic Misalignment mechanism revisited
- Kinetic fragmentation : A well-motivated production mechanism for ALP DM
- Moves the ALP Dark Matter window into testable territory.
- QCD axion DM inside laxo sensitivity
- Observational tests: Gravitational waves from a spinning axion Another promising probe: Much denser compact axion dark matter halos
- Axion cosmology: Rich spectrum of possibilities, role of radial mode!

GW signal.

- Kination: period when energy density of the universe is dominated by a scalar field with large kinetic energy.
- Kination era amplifies primordial long-lasting sources of GW e.g. inflationary GW spectrum gets blue-tilted
- A spinning axion, as motivated by the interplayed dynamics between radial and angular mode of complex scalar field can generate a short and low-scale kination during the pre-BBN epoch.
- Peaked GW signature:

tot

LISA for $E_{\text{KD}} \sim 10^{2-5}$ GeV kination | ET & CE for $E_{\text{KD}} \sim 10^{6-9}$ GeV kination.

• GW amplitude \propto kination duration

• Peak frequency kination duration & kination energy scale ET CE

• Applies to any ALP, in particular to QCD axion

 10^{-1}

Annexes.

The axion production mechanism landscape.

The axion production mechanism landscape.

Evolution of ALP energy density.

Equations of motion.

The evolution of the homogeneous field configuration is controlled by the Klein-Gordon equation in an expanding universe

$$\ddot{\Phi} + 3H\dot{\Phi} + \frac{\partial}{\partial\Phi^{\dagger}} \left(V + V_{U(1)} \right) = 0,$$

it describes a Keplerian motion in a rotationally-invariant potential *V*, in the presence of small wiggles and Hubble friction.

Origin of the kick.

Angular equation of motion:

$$\dot{n_{\theta}} + 3Hn_{\theta} = -\frac{\partial V_{U(1)}}{\partial \theta},$$

with $n_{\theta} \equiv \phi^2 \dot{\theta}$.

comoving Noether charge of the restored *U* (1) symmetry.

In absence of *U*(1)-breaking:

$$\frac{d}{dt}\left(a^3n_\theta\right) = 0,$$

charge conservation equation

Kination era.

$$a^3\phi^2\dot{\theta}$$
 = constant,

once
$$\phi \to f_a$$
, $\dot{\theta} \propto a^{-3}$ and $\rho_{\Phi} = \frac{\phi^2 \dot{\theta}^2}{2} \propto a^{-6}$.

in absence of radial mode kinetic energy

-> kination equation of state

Rotating axion models.

A peaked GW signature.

A peaked GW signature.

Inflationary GW:

Frequency of today GW: $f_{\text{today}}^{\text{GW}} \simeq H_k a_k / a_0 \propto a_k^{-2}$ (kination), a_k^{-1} (radiation), $a_k^{-1/2}$ (matter)

spectral tilt: $\Omega_{\rm GW} \simeq \left(\frac{H_k^2 a_k^4}{H_0^2}\right) \left(\frac{E_{\rm inf}}{M_{\rm Pl}}\right)^4 \propto f_{\rm today}$ (kination), $f_{\rm today}^0$ (radiation), $f_{\rm today}^{-2}$ (matter)

Summary of prospects.

Gravitational Waves from Cosmic strings.

Damping scenarios

Scenario I (non-thermal): e.g. parametric resonance extracts energy from zero-mode Damping happens fast after oscillation. (Completely damped? Further study)

Thermal damping: $\mathscr{L} \supset y_{\psi} \phi \psi_{I}^{\dagger} \psi_{R} + h.c. + g \bar{\psi} \gamma^{\mu} \psi A_{\mu}$

e.g. [Abbott, Farhi, Wise 1982] [Mukaida, Nakayama, 2012]

Scenario II: relativistic fermion @ oscillation \Rightarrow *too large thermal mass* Axion rotation is suppressed and kination era is absent.

> **Scenario III:** non-relativistic fermions @ oscillation Thermal correction can be *smaller* than the zero-T potential. Realized by having large y_{ψ} or lowering T_{reh}

Thermal damping of radial mode.

