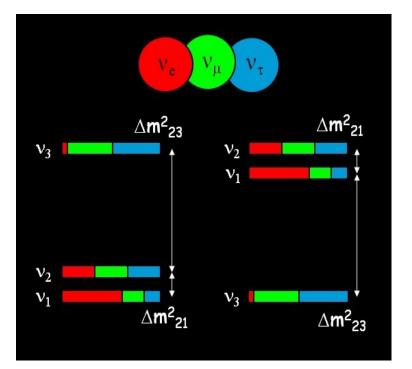

Neutrinos: between the two deserts

A. Yu. Smirnov Max-Planck-Institut fur Kernphysik, Heidelberg, Germany

> Planck 2022, Paris, June 1, 2022

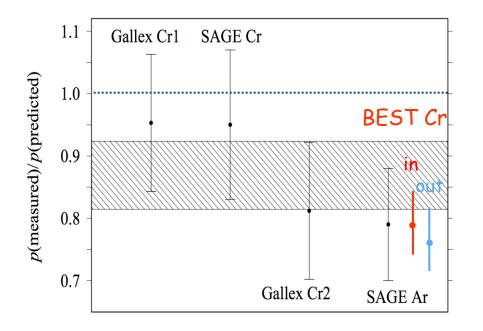
Signs, evidences of things in the deserts Mapping...


Oases and Mirages

a company that was all and his the second of the second of

Standards and anomalies

Sterile Mirages


Ga anomaly BEST result, > 5σ

LSND / MiniBooNE MicroBooNE, Fermilab SBL, JSPS²

(1 - 10)TeV scale oases? CDFII My ^{shift} Oc ^{anomaly} (9-2) XENON1T B-anomalies

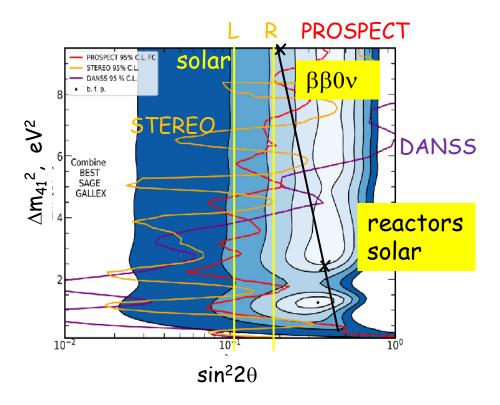
Gallium anomaly and BEST

Radiative ⁵¹Cr source (e capture) - Gallium detector

Comparison of inner - outer volume signals (two distances)

 $R_{out}/R_{in} = 0.97 + - 0.07$

- no evidence of oscillations, but


the Baksan Experiment on Sterile Transitions V.V. Barinov, et al, 2109.11482 [nucl-ex]

BEST confirms Ga anomaly deficit of - events with stat. significance > 50.

Oscillation interpretation

 $\Delta m_{41}^2 = 3.3 \text{ eV}^2$, $\sin^2 2\theta = 0.42$

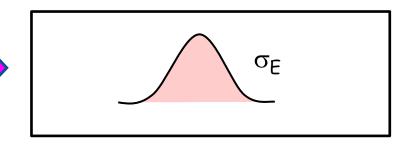
Oscillations at BEST?

Combined fit of BEST, SAGE, Gallex, 95% C.L. Limits from reactor experiments STEREO, PROSPECT, DANSS. V.V. Barinov, D. Gorbunov, 2109.14654 [hep-ph]

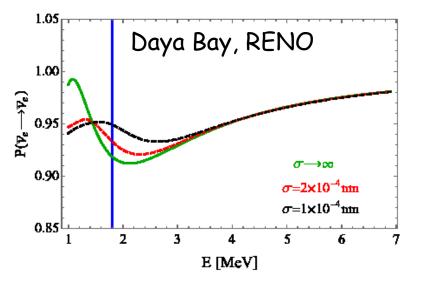
Solar neutrinos (99% CL): AGSS09(L) , GS98 (R) models <u>K. Goldhagen et al</u>,

2109.14898 [hep-ph]

Assuming CPT reconcile BEST result with reactor bounds via propagation decoherence


> C.A.Arguelles et al, 2201.05108 [hep-ph]

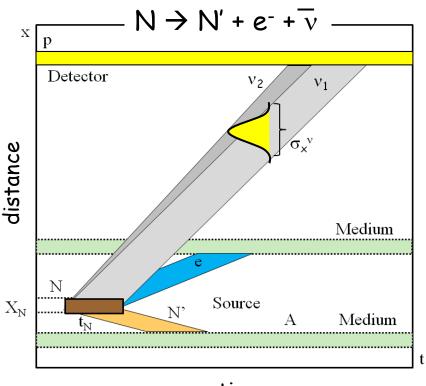
Propagation decoherence


x -t space: separation of wave packets of mass states due to differnce of group velocities

 $\int \sigma_x \qquad \qquad \int \int$

E-p space: equivalent to integration over the energy uncertainty due to $\sigma_x \sim 1/\sigma_E$

Results in suppression of interference \rightarrow damping of oscillations


A. de Gouvea, et al, 2104.05806 [hep-ph]

From absence of damping:

$$\sigma_x$$
 > 2.1 x 10⁻¹¹ cm

Computing the size of WP

Space-time localization diagram for β -decays (reactor neutrinos)

time

The slopes of bands are determined by group velocities

E.Kh. Akhmedov and A.Y.S. in preparation

Localization of N is determined by time between two collisions of atoms t_N

$$\sigma_x \sim v_v t_N \sim X_N c/v_N$$

enhancement
 $\sigma_x \sim 10^{-2} \text{ cm}^{\text{factor}}$

Interactions of N' and e⁻ can further decrease down to

<mark>σ_x ~ 10⁻⁴ cm</mark> » σ_x (exp. bound)

σ_E ~ 1/σ_x ~ 0.2 eV

 negligible correction to energy resolution of a detector

BEST-reactor tension is not removed

Bounds on the eV sterile neutrinos BEST, reactors, LSND/MB

 $m_{ee} = m_{ee}^{0} - \frac{1}{4} \sin^{2} 2\theta_{41} \sqrt{\Delta m_{41}^{2}}$

 $\beta\beta_{0\nu}$ - decay

$$\begin{bmatrix} m_{ee}^{0} & \dots & m_{es}^{0} \\ \dots & \dots & \dots \\ m_{es}^{0} & \dots & m_{ss}^{0} \end{bmatrix}$$

After decoupling of sterile neutrino:

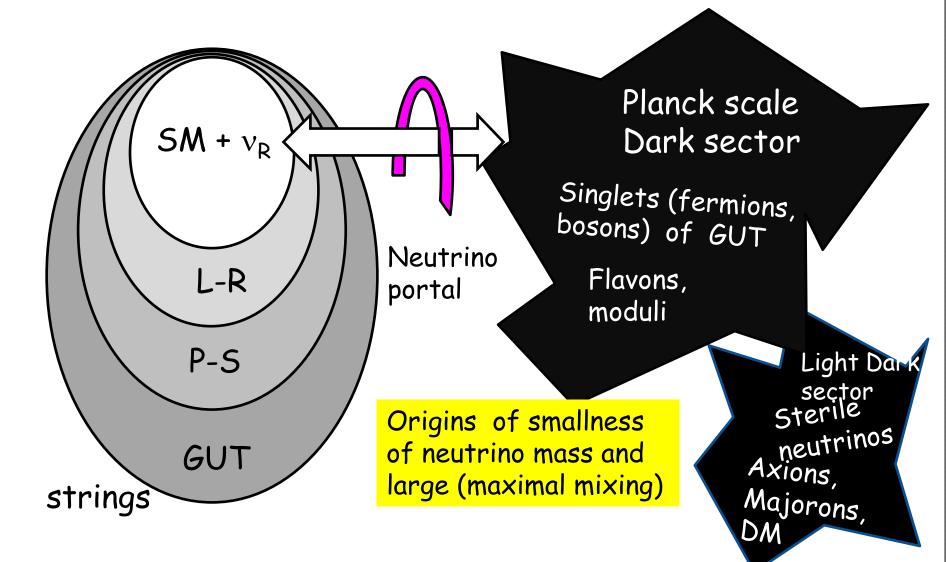
oscillations of active neutrinos, Cosmology

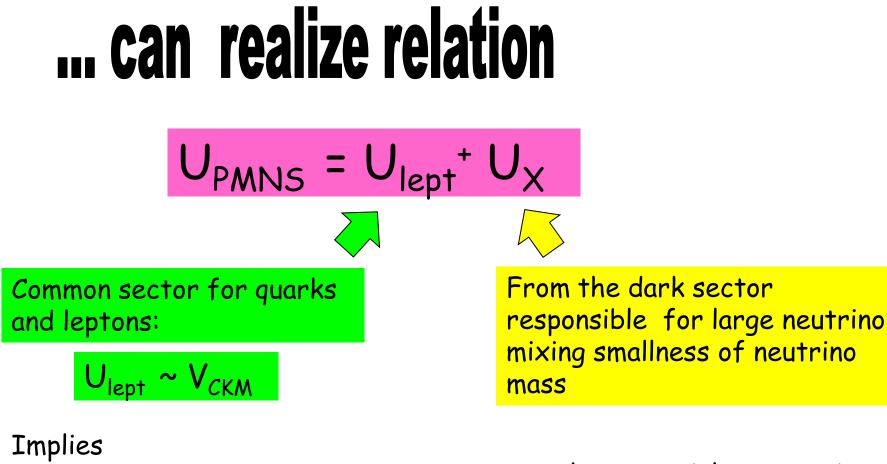
 $\sin^2 2\theta_{41} = 0.4$

$$\Delta m_{41}^2 \leftarrow \frac{16(m_{ee}^0 - m_{ee})^2}{\sin^4 2\theta_{41}}$$

 m_{ee}^{0} < 0.156 eV (90% C.L.)

KamLAND-Zen , S. Abe et al. 2203.02139 [hep-ex]


sterile neutrino


For NH: $m_{ee} \sim m_2 \sin^2 \theta_{21} = 2.5 \ 10^{-3} \ eV$ $\Delta m_{41}^2 < 2.4 \ eV^2$ For quasi-degenerate: $m_{ee} < 0.03 \ eV$ $\Delta m_{41}^2 < 1.6 \ eV^2$

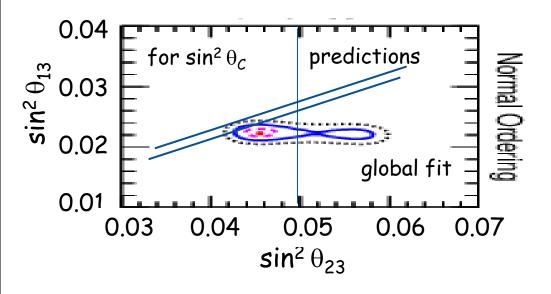
disfavour BEST, Neutrino-4

Upper desert

A scenario

Q - L unification, GUT

CKM physics, hierarchy, of masses and mixings, relations between masses and mixing may have special symmetries which lead to BM or TBM mixing


$$U_X = U_{BM}$$
 , U_{TBM}

Easier realization of symmetries

Prediction

for the 1-3 leptonic mixing:

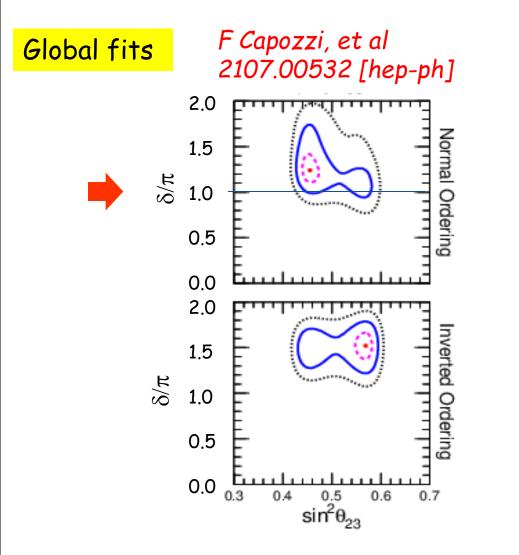
 $\sin^2\theta_{13} = \sin^2\theta_{23} \sin^2\theta_{\mathcal{C}} (1 + O(\lambda^2))$

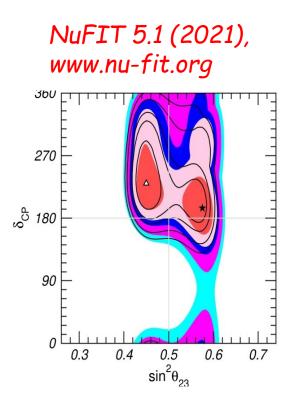
 $\theta_{\mathcal{C}}$ - Cabibbo angle

Difference can be due to deviation of θ_{12} from θ_c related to difference of q and I- masses

Renormalization effects from GUT to low energies

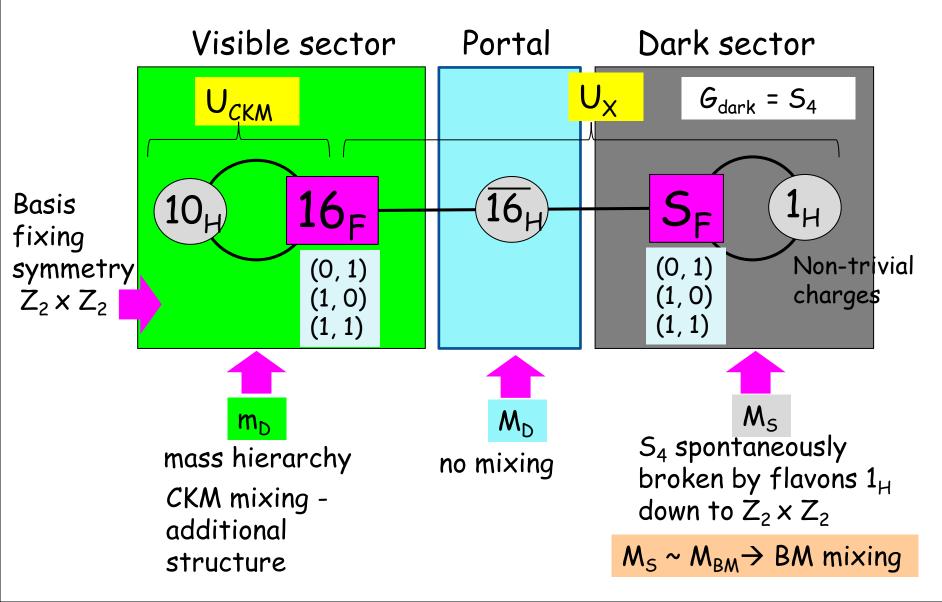
Predictions for δ_{CP}


B. Dasgupta, A Y.S. , N.P. B884 (2014) 357 1404.0272 [hep-ph]


If $U_X = U_{BM}$, U_{TBM} , then $U_{lept} \sim V_{CKM}$ can be the only source of CP violation. Leads to the relation

Leptonic CP is small because the leptonic 1-3 mixing is large

Experiment: CP-phase is close to π **?**


NOvA-T2K 2 σ tension NOvA: δ_{CP} = 0.82 π , T2K δ_{CP} = 1.5 π

even closer to $\boldsymbol{\pi}$

Realization in SO(10) GUT

Xun-Jie Xu , A.Y.S.

1803.07933 [hep-ph]

Features

Neutrino masses from the Double seesaw with

 $M_{\rm S} \sim M_{\rm PL}, \ M_{\rm D} \sim <16_{\rm H} > \sim M_{GUT}$ $m_{\rm D}, M_{\rm D} = {\rm diagonal}$

δ_{CP} = 144 - 210^o (NO)

Similar non-SUSY structure with 10_H , 16_H , 45_H (responsible for gauge symmetry breaking) *A. Preda, G. Senjanovic, M. Zantedeschi,* 2201.02785[hep-ph]

High dim. operators, correspond to the integrated out dark sector but with Λ ~ 10 M_{GUT}, M_{GUT} ~ 4 $10^{15}~GeV$

 $M_D \sim \langle 16_H \rangle \sim M_I \sim 5 \ 10^{14} \ GeV$

Unification is achieved by strong mass splitting in 45_H with weak tripled and color octet, as well as in 10_H with scalar quark doublet (leptoquarks) having masses below 10 TeV

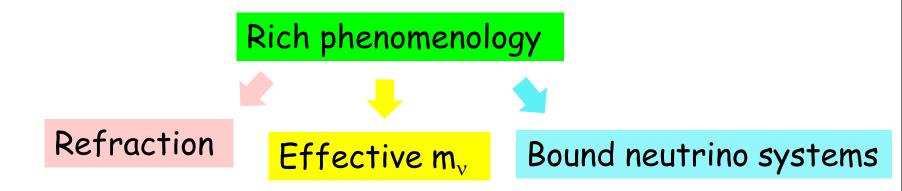
 \rightarrow low scale anomalies ?

Lower desert

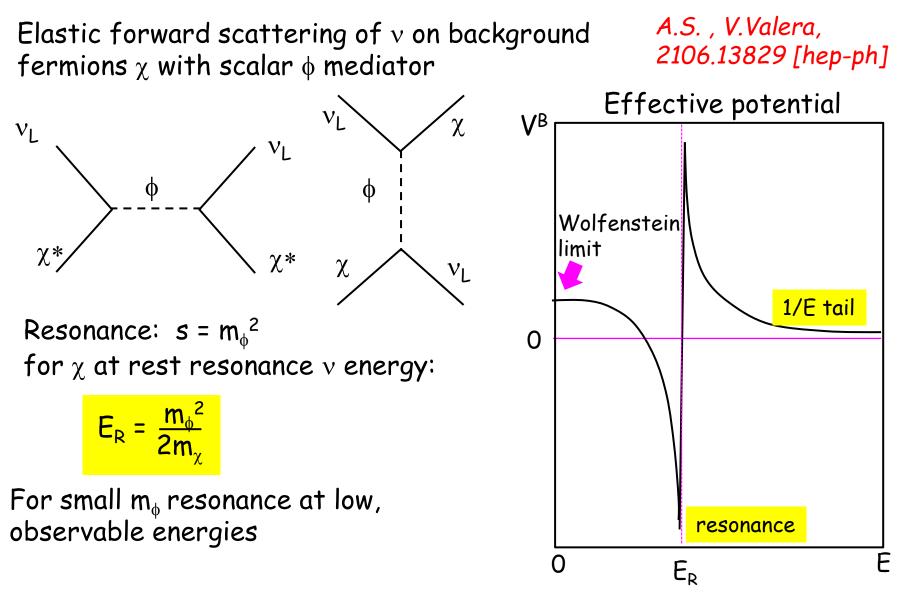
Populated by light particles with masses down to 10⁻²³ eV

Interactions of neutrinos with light scatterers via light mediators

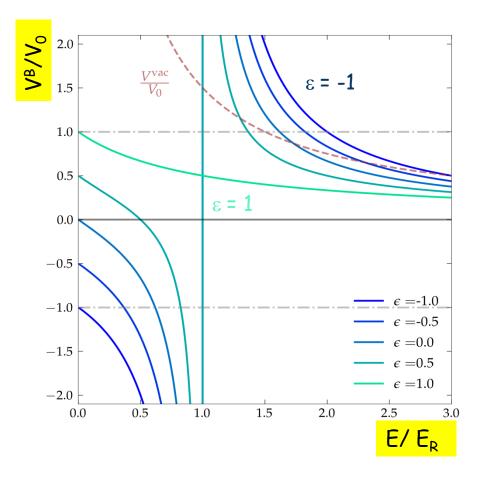
Not seen due to smallness of couplings


Smallness: portal - dark sector

The simplest example


Scalar interaction

L = y $\overline{v_L} \chi \phi$ + h. c. χ - fermion (can be RH neutrino), ϕ - scalar y -coupling, y < 10⁻⁷ L can be generated via the RH neutrino portal


elastic forward scattering, $q^2 = 0$

Resonance neutrino refraction

Background potential

 V^{B} as function of energy for different values of asymmetry ϵ

A.S. , V.Valera, 2106.13829 [hep-ph] JCAP

Neglecting width of resonance

$$V^{B} = V_{0} \frac{E/E_{R} - \varepsilon}{(E/E_{R})^{2} - 1}$$

$$V_0 = \frac{\gamma^2}{2m_{\phi}^2}(n_{\chi} + \overline{n}_{\chi})$$

number densities

Asymmetry: $\epsilon = \frac{n_{\chi} - \overline{n}_{\chi}}{n_{\chi} + \overline{n}_{\chi}}$

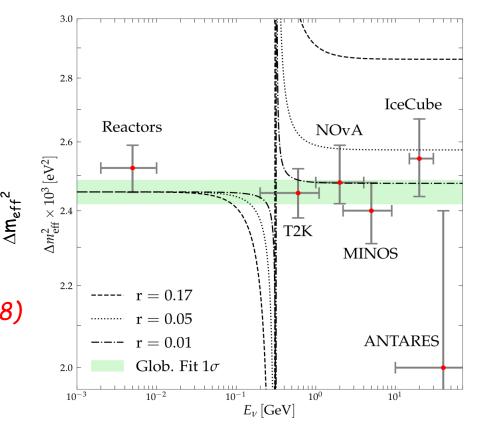
Relative contribution of the background wrt. the vacuum term in resonance

$$r = V_0 / V_R^{vac} = V_0 2E_R / \Delta m^2$$

Effective neutrino mass and MiniBooNE

A.S. , V.Valera, 2106.13829 [hep-ph]

$$\Delta m_{eff}^2 = \Delta m^2 + 2EV^B$$


(includes potential)

$$\Delta m_{eff}^{2} = - \left[\begin{array}{c} \Delta m^{2} , & E \ll E_{R} \\ r \Delta m^{2} , & E \gg E_{R} \end{array} \right]$$

 $r = V_0 2E_R / \Delta m^2$

J. Asaadi et al., PRD 97, 7, 2470, (2018) MiniBooNE explanation: E_R = 0.2 - 0.3 GeV, r > 1.6 Enhanced oscillation effect

Experimental results:

consistent with $\Delta m_{eff}^2 = const$, give bound r < 0.01

Effective neutrino mass

C .Lunardini, A.S. Ki-Yong Choi, Eung Jin Chun, Jongkuk Kim, 2012.09474 [hep-ph],

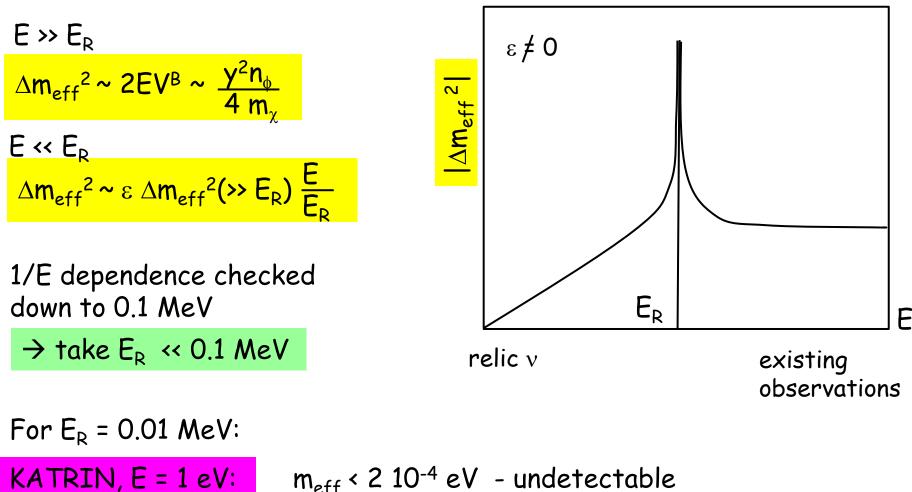
Above resonance $E \gg E_R$ (y \gg 1) the potential

- the same behaviour as the kinetic (mass) term, $\Delta m^2/2E$

 $V^{B} \sim \frac{1}{\Gamma}$

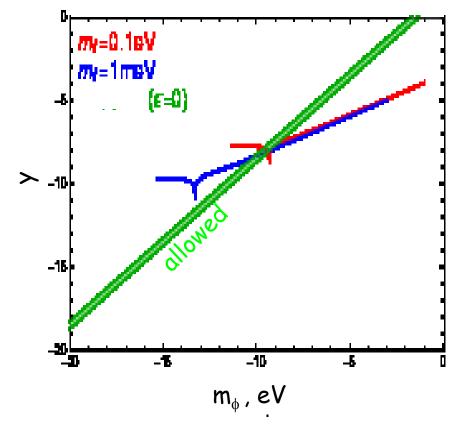
 $\Delta m_{eff}^2 = 2EV^B = const$

Can the vacuum mass be substituted by a potential completely, and oscillations be explained at $\Delta m^2 = 0$?


Phenomenologically less restricted case: scalar background, fermionic mediator

Similar results and dependences as before with substitution

 $n_{\chi} \rightarrow n_{\varphi}$, $m_{\chi} \rightarrow m_{\varphi}$


$$E_R = m_{\chi}^2/2m_{\phi}$$

Effective mass for $\Delta m^2 = 0$

Relic v, E = 10⁻⁴ eV: $m_{eff}(0) < 5 \ 10^{-6} eV$: $m_{eff}(z = 1000) \sim 5 \ 10^{-4} eV$, no problem with Cosmology

Bounds on parameters

Allowed values:

Ki-Young Choi, Eung Jin Chun, Jongkuk Kim, 2012.09474 [hep-ph]

Green band: $\Delta m_{eff}^2 = \Delta m_{atm}^2$

Upper bounds on y from scattering of neutrinos from SN1987A on DM ϕ with zero C- asymmetry and two different masses of mediator f

Similar bound from $Ly\alpha$ (relic neutrinos).

the corresponding resonance energy $E_R = 0.01 \text{ MeV}$

Cosmological bound is satisfied

Neutrino bound systems

M. Markov, Phys.Lett. 10,122 (1964)

Neutrino superstars: Massive neutrinos + gravity, analogy with neutron stars

R. D.Viollier et al, Phys.Lett. B306, 79 (1993) ,.... Gravity, $m_v = (10 - 100) \text{ keV}$

G. J. Stephenson et al, Int. J. Mod. Phys. A13, 2765 (1998) ... Long range scalar Yukawa forces, $m_v = 13 \text{ eV}$, motivated by ³H exp. anomaly, negative m²

M.B. Wise and Y. Zhang, Phys. Rev. D 90, 055030 (2014), JHEP 02, 023 (2015) M.I. Gresham, H.K. Lou and K.M. Zurek, Phys. Rev. D96, 096012 (2017), Phys. Rev. D 98, 096001 (2018)

Dark matter nuggets: Dirac fermions with $m_D \sim 100$ GeV and coupling constant with scalar $\alpha_{\phi} = 0.01 - 0.1$

A.Y.S, and Xun-Jie Xu, arXiv: 2201.00939 [hep-ph] + update

v • ∳ system

Long range attractive forces due to Yukawa interactions, neutrino gas with density n and momentum distribution f(p, t, x)

Neutrino density (expectation value) - source of the scalar field

$$\langle \overline{v}v \rangle = n^* = \frac{1}{2\pi^2} \int p^2 dp \frac{m^*}{E_p} f(p)$$
$$E_p = \sqrt{p^2 + m^{*2}} \qquad m^* = m_v + y\phi$$

effective neutrino mass in the field

In non-relativistic limit p << m^{*}, m_v $n^* \rightarrow n$

In the relativistic case p >> m* - chiral suppression n* << n

 \rightarrow the field (potential) is suppressed, attraction force is suppressed

 \rightarrow difference from gravity - no collapse

Relativistic equations

Static case, degenerate Fermi gas

$$(\nabla^2 - m_{\phi}^2) \text{ m*} = y \text{ n*}$$
$$\text{m*} \frac{\text{dm*}}{\text{dr}} = -p_F \frac{\text{dp}_F}{\text{dr}}$$

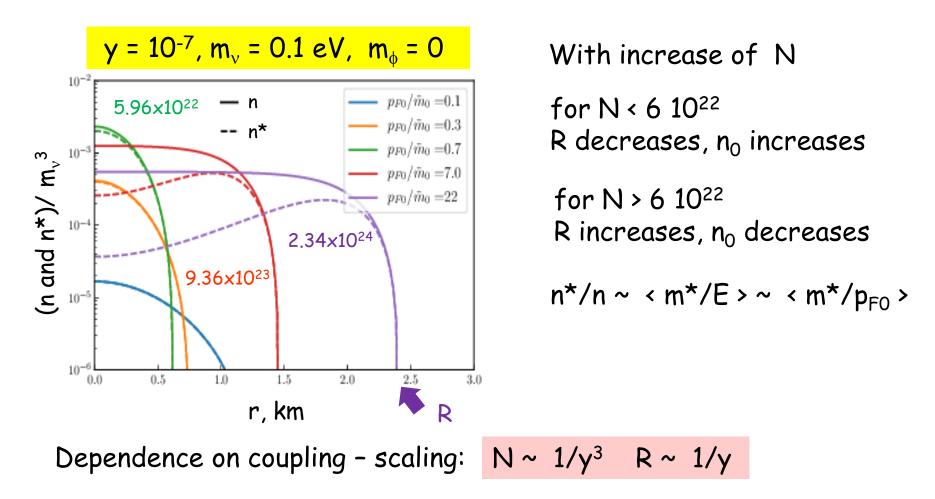
eq. of motion of $\boldsymbol{\varphi}$

equilibrium equation, $d\mu$ /dr = 0, Eq. of Hydrostatic equilibrium

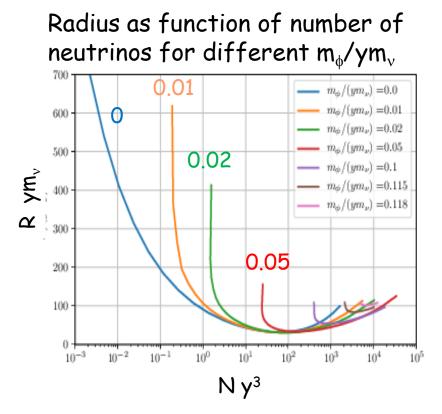
 $n^{*} = \frac{1}{2\pi^{2}} \int_{0}^{p_{F}} \frac{m^{*}}{\sqrt{p^{2} + m^{*2}}} p^{2} dp$

 $p_F \rightarrow$ neutrino density

Boundary conditions:

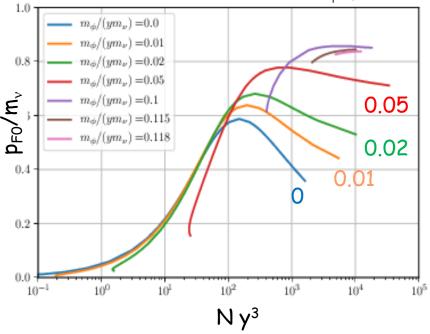

 $\begin{array}{ll} p_F(0) = p_{F0} & - external (given) \ parameter \\ m^*(0) = m^*_0 & m^*_0 \ \text{is tuned so that at } r \rightarrow \text{infty } m^* \rightarrow m_v \end{array}$

In non-relativistic case (*) is reduced to the Lane-Emden equation


Density distribution

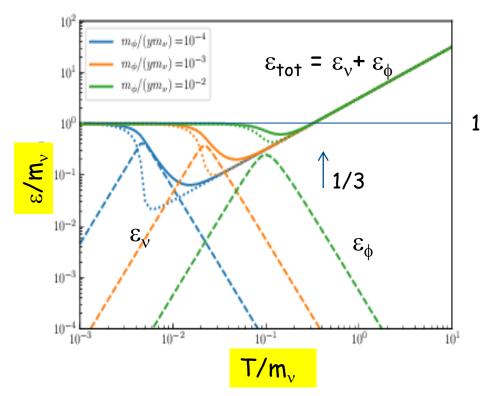
A.Y.S, and Xun-Jie Xu, 2022 ...

Density and effective density distributions for different values of $p_{F0}/m_{\rm v}$ (corresponding values of N indicated)


Properties of neutrino stars

Lover bound on N, for non-zero m_{φ} which increases with m_{φ}

Minimal radius: increases with m_{φ} and shifts to larger N


Fermi momentum in center vs. number of neutrinos for different m_{ϕ}/ym_{v}

Maximal central density (p_{FO}) which is determined by value of neutrino mass

$$n_v^{max} = 4 \ 10^8 \ cm^{-3} \left(\frac{1}{6} \right)^{10}$$

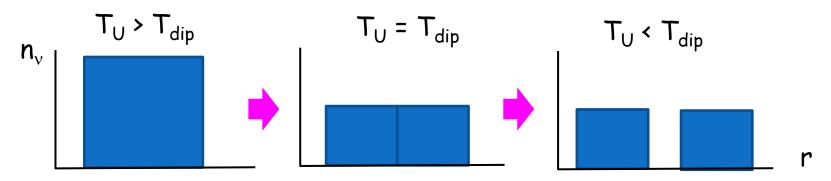
Formation of the v - clusters

For strength of interactions (ym__/m__) > 25

the dip develops in $\epsilon^{\text{tot}}(T)$ dependence with

 $\varepsilon_{tot} < m_{v}$

at T ~ $m_v/3$, when neutrinos become non-relativistic


implies bound state with binding energy \mbox{m}_{ν} – $\ensuremath{\epsilon_{tot}}$

Dependence of energy per neutrino on T/m_v for different values of m_{\u03c6}/ym_v $\epsilon_{\u03c6}$ - dashed, ϵ_{v} - dotted, ϵ_{tot} - solid

With increase of strength the minimum of dip shifts to lowerT

Instability and Fragmentation

Below T_{dip} expansion and cooling require increase of energy of the system \rightarrow fragmentation without decrease of T and density

 $T_{\rm U}\,$ - temperature in the Universe

Fragmentation stars at $z_f \sim 200$: corresponds to maximal density The size of the Universe that epoch $D_U(200) = 20$ Mpc

The biggest structures: $R_f \sim D_U(200)/4 = 5 \text{ Mpc}$ Distance between structures: $d_f(200) \sim D_U(200)/2 = 10 \text{ Mpc}$ $N_f = 1.2 \ 10^{85}$, $M_f = 4 \ 10^{17} M_{sun}$

Present size of voids $d(0) \sim z_f d_f = 2000 \text{ Mpc}$

Parameters of clusters

The biggest possible structures which would satisfy energy conditions correspond to $m_{\phi} \sim 3 \ 10^{-32} \ eV$

If m_{ϕ} >> 3 10⁻³² eV such structures are not stable \rightarrow further fragmentation occurs down to R \sim 1/ m_{ϕ}

For
$$m_{\phi} / ym_{v} = 10^{-2}$$

$$\frac{R}{10 \text{ kpc}} \frac{y}{1.4 \text{ } 10^{-26}} \frac{m_{\phi}}{1.4 \text{ } 10^{-30}}$$

$$\frac{1}{10} \text{ km} \frac{1.4 \text{ } 10^{-22}}{4 \text{ } 10^{-11}} \frac{1.4 \text{ } 10^{-26}}{4 \text{ } 10^{-11}}$$

If formation starts at z =200, voids are 200 bigger than clusters

Summary

Neutrinos (masses and mixing) probe new physics in the deserts: High energy dark sector at (string – Planck) scale or Low energy dark sector down to 10^{-23} eV? Or both? $m_v = m_{he} + m_{low}$

Neutrino interactions with light dark sector - rich phenomenology: resonance refraction at low energies, medium induced neutrino mass bound neutrino systems...

Gallium anomaly, BEST, LSND/MB: light sterile neutrinos representatives of light dark sector or mirage?

The High scale DS - portal to the low scale DS?

PLANCK: from the Planck scale to the Electroweak scale and lower