Sommerfeld Effect and Bound State Formation in Simplified Dark Matter Models

Emanuele Copello Technical University of Munich

Based on arXiv:2203.04326 (soon on JHEP)

with Mathias Becker (TUM), Julia Harz (TUM), Kirtimaan Mohan (MSU) and Dipan Sengupta (UCSD)

Planck 2022 – DM parallel session Paris, June 1, 2022

Technische Universität München

Simplified *t*-channel models for DM

Model parameters: $\{m_\chi, \Delta=m_X-m_\chi, g_{
m DM}\}$

- ✓ Few new particles and parameters
- ✓ Yet, rich phenomenology on vast parameter space

See also [Mohan et al. (2019)] [Arina et al. (2020)] [Arina et al. (2021)]

DM abundance and coannihilations

DM abundance and coannihilations

Incoming colored states experience gluonic long-range force!

Non-perturbative effects relevant \Rightarrow Sommerfeld effect + Bound state formation

Long-range colored interactions: Sommerfeld effect [Sommerfeld (1931)]

Long-range colored interactions: bound state formation

$$\begin{split} & (X + X^{\dagger})_{[\mathbf{8}]} \to \left\{ \mathcal{B}(XX^{\dagger})_{[\mathbf{1}]} + g \right\}_{[\mathbf{8}]} \\ & \sigma_{\mathrm{BSF}}^{[\mathbf{8}] \to [\mathbf{1}]} v_{\mathrm{rel}} \propto \left| \left\langle \psi_{100}^{[\mathbf{1}]} \left| \mathbf{r} \right| \varphi_{\mathbf{k}_{\mathrm{rel}}}^{[\mathbf{8}]} \right\rangle \right|^2 \sim \sigma_0^{\mathrm{pert}} \, S_{\mathrm{BSF}}(\zeta_S, \zeta_B) \\ & \sim (1 \div 10^2) \times \sigma_0^{\mathrm{pert}} \text{ if } v_{\mathrm{rel}} \sim \alpha \text{ , suppressed if } \frac{v_{\mathrm{rel}} \gg \alpha}{v_{\mathrm{rel}} \ll \alpha} \end{split}$$

If Γ_{Dec} , $\Gamma_{\text{Ion}} \gg H \implies \frac{dY_{\text{BS}}}{dM} \simeq 0$ \rightarrow one-Boltzmann eq. effective description!

 $\begin{aligned} \mathcal{B}(XX^{\dagger}) &\to g + g \quad \mathsf{DECAY:} \ \Gamma_{\mathsf{Dec}} \\ \mathcal{B}(XX^{\dagger}) + g \to X + X^{\dagger} \quad \mathsf{IONISATION:} \ \Gamma_{\mathsf{Ion}} \end{aligned}$

$$\langle \sigma_{\rm eff} v_{\rm rel} \rangle = \sum_{i,j=\{\chi,X\}} \langle \sigma_{ij} v_{ij} \rangle \frac{Y_i^{\rm eq} Y_j^{\rm eq}}{\left(\tilde{Y}^{\rm eq}\right)^2} + \langle \sigma_{\rm BSF} v_{\rm rel} \rangle_{\rm eff} \frac{\left(Y_X^{\rm eq}\right)^2}{\left(\tilde{Y}^{\rm eq}\right)^2} \qquad \left\langle \sigma_{\rm BSF} v_{\rm rel} \right\rangle_{\rm eff} \equiv \left\langle \sigma_{\rm BSF}^{[\mathbf{8}] \to [\mathbf{1}]} v_{\rm rel} \right\rangle \frac{\Gamma_{\rm dec}[\mathbf{1}]}{\Gamma_{\rm dec}[\mathbf{1}] + \Gamma_{\rm ion,[\mathbf{1}]}}$$

$$\begin{split} T \gg \mathcal{E}_{100} & \Gamma_{\rm Ion} \gg \Gamma_{\rm Dec} \Rightarrow \langle \sigma_{\rm BSF} v_{\rm rel} \rangle_{\rm eff} \to 0 \\ T \ll \mathcal{E}_{100} & \Gamma_{\rm Ion} \ll \Gamma_{\rm Dec} \Rightarrow \langle \sigma_{\rm BSF} v_{\rm rel} \rangle_{\rm eff} \to \langle \sigma_{\rm BSF} v_{\rm rel} \rangle & \text{[Ellis et al. (2015)], [Petraki et al. (2015)]} \\ T \ll \mathcal{E}_{100} & \Gamma_{\rm Ion} \ll \Gamma_{\rm Dec} \Rightarrow \langle \sigma_{\rm BSF} v_{\rm rel} \rangle_{\rm eff} \to \langle \sigma_{\rm BSF} v_{\rm rel} \rangle & \text{[Mitridate et al. (2017)], [Harz and Petraki (2018)]} \\ \end{split}$$

Impact on DM relic abundance: calculation

State-of-the-art...

... and our improvement

We modified micrOMEGAs v.5.2.7 [Belanger et al. (2001) and updated versions] including:

- 1. Sommerfeld effect $(\mathbf{3} \otimes \overline{\mathbf{3}} \text{ and } \mathbf{3} \otimes \mathbf{3})$
- 2. BSF (singlet ground state) for gluon emission.
- 3. Exploitation of CalcHEP calculations + long-time integration ($z \leq 10^4$)
- \Rightarrow Automatic + efficient RD computation \Rightarrow parameter space scan faster and easier

Experimental limits ×

Experimental limits ✓

Impact on DM relic abundance: parameter space

- Bands
$$\leftrightarrow \Omega_{\rm DM} h^{\rm 2} = 0.120 \pm 0.005$$

- Dramatic change in DM density with SE and SE+BSF for small $g_{\rm DM}$ when $\Delta m \ll m_{\rm DM}.$

• For
$$g_{\rm DM} \sim \pmb{\sigma}(1)$$
 mild effects

• Stronger effective annihilations \Rightarrow larger DM masses needed \Rightarrow larger mass splittings Δm

Impact on DM relic abundance: parameter space

Fixed at maximum (+5 σ) observable value: $\Omega_{DM}h^2 = 0.125$

Direct detection constraints

Becker, EC, Harz, Mohan, Sengupta (2022)

Prompt searches: mono- and multi-jet + MET

Prompt searches @ LHC

Recasting ATLAS <u>mono-jet</u> and <u>multi-jet</u> + MET analyses with 139 fb⁻¹ @ $\sqrt{s} = 13$ TeV:

- 1. Pair-production of mediators followed by decay to quark + DM
- 2. Associated production of DM + mediator
- 3. Pair-production of DM + initial-state-radiated (ISR) jet

Mono- and multi-jet comparable at small Δm , multi-jet stronger at large Δm

Prompt searches: bound state resonances

Prompt searches @ LHC

Squarkonium-like bound state resonances could form at the LHC

$$\sigma\left(pp \to \mathcal{B}(XX^{\dagger})\right) = \frac{\pi^2}{8m_{\mathcal{B}}^3} \Gamma\left(\mathcal{B}(XX^{\dagger}) \to gg\right) \mathcal{P}_{gg}\left(\frac{m_{\mathcal{B}}}{13 \text{ TeV}}\right)$$

Resonances can be detected via, e.g., diphoton signal:

Potential of LLP searches

Combined constraints... with SE and SE+BSF

+ Sommerfeld + BSF

Combined constraints... with SE and SE+BSF

Zoomed in the strongly coannihilating region

+ Sommerfeld + BSF

Future projections

Direct detection → Darwin project Colliders → High-Lumi LHC

Final remarks: interesting LLP excess

Interesting excess in LLP searches around 1.4 TeV(see talk by J. Gonski at Moriond 2022)

Becker, EC, Harz, Mohan, Sengupta (2022)

Final remarks: potential of bound state searches at LHC

Conclusions

- Non-perturbative effects (SE and BSF) from long-range interactions have a sizable impact on the DM relic abundance in the coannihilating regime for colored dark sectors: smaller g_{DM} , larger m_{DM} and Δm wrt. the perturbative scenario.
- SE and BSF modify the effective annihilation cross-section in a non-trivial way, depending on the dominating processes (and the potential). A simple flat factor is not sufficient.
- SE and BSF extend unconstrained parameter space (small Δm), increasing region where portal coupling is small \rightarrow non-thermal DM production (*see talk by J. Bollig tomorrow*).
- LLPs searches efficient for tiny couplings ($< 10^{-6}$). BS searches at colliders independent of portal coupling → bridge prompt and LLPs regimes ($10^{-6} \leq g_{DM} \leq 10^{-2}$).
- Model (almost) fully probed by future experiments → highly testable

Thank you for your attention!

Emanuele Copello – Planck 2022

ТΠ

Technische Universität München