freezeatter and nbes

Dark matter

Compelling evidence (only gravitational) of non-luminous matter

We know...

- its abundance - presureless - long-lived enough - neutral enough

We don't know...

- fundamental particle? - spin, mass?
- non-gravitational interactions?
- thermal relic?

- ...

- when was it produced?

Particle nature of dark matter

Thermal OR non-thermal?

Depends on whether DM is in thermal equilibrium with the SM bath

If $g_{\chi} \gg g_{\phi}$, dynamics is far more complex!!

Chu, Hambye & Tytgat, *JCAP* 05 (2012) 034 Bernal, Chu, García-Cely, Hambye & Zaldivar, JCAP 03 (2016) 018

 $T' \rightarrow$ temperature of dark sector $T \rightarrow$ temperature of visible sector

Sequential freeze-in

- * A fifth stage in the phase diagram
- * Zero initial abundance for mediator & DM

DM Production

Hambye et. al, *Phys.Rev.D* 100 (2019) 9, 095018

Hambye et. al, *Phys.Rev.D* 100 (2019) 9, 095018

A Toy Model

Mediator Production * $ug \rightarrow u\phi$

- * $u\bar{u} \rightarrow g\phi$
- * $g \rightarrow u \bar{u} \phi$
- * & QED counterparts

Bélanger et. al, *Phys.Rev.D* 102 (2020) 3, 035017

$-\mathscr{L}_{\text{int}} = y_{\chi}\phi\bar{\chi}\chi + y_{q}\phi\bar{u}u$ Similar Hadrophilic model Batell et. al, *Phys.Rev.D* 100 (2019) 9, 095020

DM Production

* $u\bar{u} \rightarrow \bar{\chi}\chi$

* $\phi \phi \rightarrow \bar{\chi} \chi$

Phase diagram

Phase diagram

* standard freeze-in $SM + SM \rightarrow \chi\chi$ $\Gamma \propto n_{SM}^2 \langle \sigma v \rangle \sim (y_q y_\chi)^2$ * mediator-dom. freeze-in (med. is thermal) $\phi \phi \rightarrow \chi \chi$ $\Gamma \propto n_{\phi}^2 \langle \sigma v \rangle \sim (y_\chi)^4$ * mediator-dom. freeze-in (med. is non-thermal) $\phi \phi \rightarrow \chi \chi$

$$\Gamma \propto n_{\phi}^2 \langle \sigma v \rangle \sim \left(n_{\rm SM}^2 \langle \sigma v \rangle_{\phi} \right)^2 \langle \sigma v \rangle \sim \left(\frac{y_q y_{\chi}}{y_q^{\rm eq}} \right)^4$$

Probes

 $\sigma_{\rm SI} \propto (g_{\phi}g_{\chi})^2$

A leptophilic extension

 $-\mathcal{L}_{\text{int}} = y_{\chi}\phi\bar{\chi}\chi + y_{q}\phi\bar{u}u + y_{e}\phi\bar{e}e$

- * Towards a more generic model
- * Exploring complementarity between Direct Detection,
- electron beam dumps and proton beam dumps
- * Alternate probes like atomic spectroscopy

G. Bélanger, SC, C. Delaunay (this work!)

Phenomenology

Extra ϕ production channel(s) * $e^+e^- \rightarrow \gamma \phi$ * $e\gamma \rightarrow e\phi$ * $\gamma \rightarrow e^+e^-\phi$

Extra χ **production channel(s)** * $e^+e^- \rightarrow \chi \bar{\chi}$

Probe for only leptophilic case

Probe for only leptophilic case

Modified limits

 y_e

Modified limits

 y_e

Take home

- still deliver good relic abundance.
- parameter space.

* Sequential freeze-in is a recently discovered DM production regime at work when $g_{\gamma} \gg g_{\phi}$. Interestingly, values of coupling combinations much smaller than the standard freeze-in can

Direct detections, as well as beam-dump experiments, will be able to probe a large part of the

Back ups

Thermal corrections

- * Here thermal corrections are a priori relevant since DM production is out of equilibrium starting from very high temperatures.
- Thermal corrections are applicable to the collision term $C[f_{\phi}]$.

- In finite-temperature QFT:

As for DM production is concerned: **O(1) change in the abundance**, wrt not considering such corrections

- particles acquire temperature-dependent masses - interaction vertices are also temperature-dependent - other effects apparently less relevant...

As for the mediator-production is concerned:

- cross-section's forward divergence regulated by thermal masses at **high momenta**

- Enhancement of med. production at **low momenta** (soft phi), which is absent when no thermal corr. are included

Beyond kinetic equilibrium...

Sometimes in the literature it is assumed $f_{\phi} \propto f_{\rm eq}^{\rm BE}$ so as to avoid solving (I) (kinetic eq. approx.)

As for med. itself, this is far from correct

If assuming MB distrib. for the SM particles

$$\frac{f_{\phi}}{f_{\rm eq}} \sim 1 - \exp\left[-\frac{g_v^2 M_{\rm Pl}}{p} \left(1 + \log \frac{g_v^2 M_{\rm Pl}}{p}\right)\right]$$

DM production from mediator:

$$\Gamma_{\phi\phi\to\chi\chi} \propto f_{\phi}(p_1) f_{\phi}(p_2)$$

φ---

since $m_{\chi} \gg m_{\phi}$ $p_1 + p_2$ should be sizeable \longrightarrow

Thus, as for DM is concerned, kinetic eq. approx. actually gives correct order of magnitude [off by factor ~ 2 for low coupling g_v]

 $p_1 + p_2$ should be sizeable \implies DM prod. is maximised for $p_1 \gg p_2$