Fingerprints of freeze-in dark matter in an early matter-dominated era

Avik Banerjee

Chalmers University of Technology Gothenburg, Sweden

> Based on 2204.03670 Co-Author: Debtosh Chowdhury

Planck 2022, Paris 02.06.2022

Freeze-out vs. Freeze-in

Freeze-out	Freeze-in
DM-SM in thermal equilibrium,	DM-SM never in thermal equilibrium,
Large coupling required	Extremely small coupling
At high temperature DM has thermal abundance	Initial abundance of DM at the end of inflation is negligible
Cosmology at high temperature is	Cosmology from the end of inflation
irrelevant	till today impacts relic

Early matter domination

Constraints from BBN: $T_{\rm RH} \gtrsim {\rm few} \ {\rm MeV}$

Evolution is dependent on the dissipation rate

1711.05007,1803.08064,1910.06319,2003.01723... vast literature on effect of EMD on DM production See also, talk by Catarina Cosme 3 (neutrino session)

Matter dissipation rate

In general depends on the temperature and the expansion of the universe

$$\Gamma_{\phi} = \hat{\Gamma} \left(\frac{T}{T_{\rm eq}}\right)^n \left(\frac{a}{a_{\rm eq}}\right)^k$$

Examples:

Oscillating scalar fields with $\mathbf{V}(\phi)\sim\phi^{\mathbf{p}}$ potential

$$\begin{split} \Gamma_{\phi \to f\bar{f}} \propto m_{\phi}(t) \propto a^{-3(p-2)/(p+2)} \,, \,\, (\text{for fermionic decay}), \\ \Gamma_{\phi \to bb} \propto m_{\phi}^{-1}(t) \propto a^{3(p-2)/(p+2)} \,, \,\, (\text{for bosonic decay}), \\ & \quad \text{Garcia et. al. 2012.10756} \\ & \quad \text{See talk by Keith Olive} \\ & \quad \text{Moduli decay: } \Gamma_{\phi} \propto \frac{T^3}{M_p^2} \\ & \quad \text{Bodeker, hep-ph/0605030} \end{split}$$

More Examples:

Γ_{ϕ}	(n,k,ω)	T(z) during EMD _{NA}
const.	(0,0,0)	decreases with z
T	(1,0,0)	decreases with z
$\langle \phi \rangle^{-2}$	(0,3,0)	increases with z
$\frac{T^3}{\langle \phi \rangle^2}$	(3,3,0)	increases with z
$\frac{T^2}{\langle \phi \rangle}$	(2, 3/2, 0)	remains constant
$rac{T^2}{\langle \phi angle}$	(2, 6/5, 1/5)	decreases with z
Mukaida et. al. 1208.3399, 1212.4985		
		Drewes, 1406.6243
	Co	et. al. 2007.04328

Freeze-in production rate

Freeze-in DM yield during EMD

• Non-trivial temperature evolution also changes the DM production rate during non-adiabatic EMD

$$\frac{\Omega h^2}{\Omega h_{\rm RD}^2} = \frac{Y_{\chi}(z_0)}{Y_{\chi}^{\rm RD}(z_0)} \left(\frac{z_0^{\rm RD}}{z_0}\right)^3 = \frac{Y_{\chi}(z_0)}{Y_{\chi}^{\rm RD}(z_0)} \left(\frac{T_{\rm RH}}{T_{\rm eq}}\right)$$
$$\sim 10^{-2} - 10^{-3}$$

Larger coupling is required to saturate $10 ext{ } 10^2 ext{ } 10^3 ext{ } 10^4 ext{ } 10^5 ext{ } 10^6 ext{ } 10^7 ext{ } 10^8$ freeze-in relic in presence of EMD epoch

AB, D Chowdhury, 2204.03670

Dark photon portal

Parameter space staisfying observed relic is accessible to experiments in the presence of an early matter dominated era

8

AB, D Chowdhury, 2204.03670

Summary

- Freeze-in DM relic depends on the nonstandard epochs of cosmology at high temperatures
- An epoch of pre-BBN early matter domination leads to freeze-in with larger couplings
- Details depend crucially on the temperature and expansion dependent dissipation rate of the dominating matter field
- Dark photon portal dark matter model may come under the experimental radar in presence of early matter domination

THANK YO