Neutrino Portal to FIMP Dark Matter with an Early Matter Era

Catarina M. Cosme

in collaboration with Maíra Dutra, Teng Ma, Yongcheng Wu, and Litao Yang

JHEP 2021, 26 (2021)

Planck 2022, Ancienne École Polytechnique, Paris, 30 May 2022

Introduction – Evidence for Dark Matter (DM)

Galaxy Rotation Curves

Merging clusters (Bullet Cluster)

Structure formation

Properties of a DM candidate

- Stable or very long-lived (lifetime ≥ age of the Universe);
- Cold (non-relativistic);

٠

- Very small interaction with the electromagnetic field;
- It must have the observed abundance.

Cosmic Microwave Background (CMB)

Big Bang Nucleosynthesis (BBN)

30/05/2022

Freeze-out

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_X = n_X \langle \sigma v \rangle \leq H$;
- WIMPs Weakly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \frac{1}{\lambda};$
- But:
 - **no detection** so far;
 - Large parameter space ruled out by

experiments. [Arcadi et al. arXiv:1703.07364]

Freeze-out vs

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$;
- WIMPs Weakly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \frac{1}{\lambda};$
- But:
 - **no detection** so far;
 - Large parameter space ruled out by

experiments. [Arcadi et al. arXiv:1703.07364]

 $X\overline{X} \leftrightarrow SM$

Freeze-out vs

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_X = n_X \langle \sigma v \rangle \leq H$;
- WIMPs Weakly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \frac{1}{\lambda};$
- But:
 - **no detection** so far;
 - Large parameter space ruled out by

experiments. [Arcadi et al. arXiv:1703.07364]

Freeze-out vs

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$;
- WIMPs Weakly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \frac{1}{\lambda};$
- But:
 - **no detection** so far;
 - Large parameter space ruled out by

experiments. [Arcadi et al. arXiv:1703.07364]

Freeze-in

Freeze-in Freeze-out VS $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$; ٠
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \frac{1}{2};$
- But:
 - **no detection** so far;
 - Large parameter space ruled out by ۲

experiments. [Arcadi et al. arXiv:1703.07364]

- $\Gamma_X < H$ always;
- **FIMPs** Feebly Interacting Massive Particles;
- $\Omega_{X.0}h^2 \sim \lambda;$
- Small couplings to attain the observed relic abundance;
- Can evade stringent observational constraints;
- But: hard to probe.

Introduction - An early matter-dominated period

Introduction - An early matter-dominated period

Introduction - An early matter-dominated period

End of matter dominated period: matter component decays into Standard Model (SM) particles;

Freeze-in: Couplings to the visible sector need to be larger than usual freeze-in

DM production during a **non-standard expansion** may result to

important experimental and observational ramifications.

The model – Neutrino portal to FIMP Dark Matter with an early matter era

• SM neutrinos mass: Type-I seesaw mechanism;

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm hidden} + \mathcal{L}_{\rm seesaw} + \mathcal{L}_{\rm portal}$$

$$\mathcal{L}_{\rm hidden} = \overline{\chi}(i\partial - m_{\chi})\chi + |\partial_{\mu}S|^{2} - m_{S}^{2}|S|^{2} + V(S) \qquad \qquad \mathcal{L}_{portal} = -\left(\lambda_{\chi}^{i}S\overline{\chi}(N_{\ell}^{i})_{R} + h.c\right)$$

$$\mathcal{L}_{seesaw} = \frac{1}{2}\overline{N}_{\ell}^{i}(i\partial\delta^{ij} - m_{N}^{ij})N_{\ell}^{j} - \left(\overline{L_{L}^{i}}Y_{\nu}^{ij}\widetilde{H}(N_{\ell}^{j})_{R} + h.c\right)$$

The model – Neutrino portal to FIMP Dark Matter with an early matter era

• SM neutrinos mass: Type-I seesaw mechanism;

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm hidden} + \mathcal{L}_{\rm seesaw} + \mathcal{L}_{\rm portal}$$

$$\mathcal{L}_{\rm hidden} = \overline{\chi}(i\partial - m_{\chi})\chi + |\partial_{\mu}S|^{2} - m_{S}^{2}|S|^{2} + V(S) \qquad \qquad \mathcal{L}_{portal} = -\left(\lambda_{\chi}^{i}S\overline{\chi}(N_{\ell}^{i})_{R} + h.c\right)$$

$$\mathcal{L}_{seesaw} = \frac{1}{2}\overline{N}_{\ell}^{i}(i\partial\delta^{ij} - m_{N}^{ij})N_{\ell}^{j} - \left(\overline{L_{L}^{i}}Y_{\nu}^{ij}\widetilde{H}(N_{\ell}^{j})_{R} + h.c\right)$$

- $\rho_M \gg \rho_R, \rho_{DM}$ for some initial temperature T_i ;
- $H_{RD} = \frac{\pi}{\sqrt{90}} \sqrt{g_*} \frac{T^2}{M_{Pl}};$

•
$$H_{EMD}(T) = H_{RD}(T_r) \sqrt{\Delta \frac{4g_{s}(T)}{3g_e(T_r)}} \left(\frac{T}{T_r}\right)^{\frac{3}{2}}$$

 $\Delta \equiv$ Amount of **entropy production** during EMD; related with the duration of the EMD \Rightarrow **larger** Δ , **longer** EMD;

•
$$H_{EP}(T) = H_{RD}(T_r) \frac{g_e(T)}{g_e(T_r)} \left(\frac{T}{T_r}\right)^4;$$

Dark matter production – Processes contributing to DM

Processes contributing to the Freeze-in production:

 $\left|\lambda_{\chi}\right|^{2}$

Dark matter production – Relic abundance

DM relic abundance

- DM production $\longrightarrow \frac{n_{DM}}{s} \equiv Y_{DM}$ becomes constant;
- DM relic abundance:

$$\Omega_{DM,0} \equiv \frac{\rho_{DM,0}}{\rho_{c,0}} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} n_{DM} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} Y_{DM,0} s_0 \simeq 0.26$$

$$Y_{DM,0} = Y_{ERD} + Y_{EMD} + Y_{EP} + Y_{RD}$$

• The yield Y_{DM} for some period is given by:

$$Y_{DM}(T_f) - Y_{DM}(T_i) = \int_{T_i}^{T_f} dT \ g_{*s} \overset{R_{DM}}{H} T s$$

Depends on the epoch

Has to take into account all the processes contributing to DM (depends on λ_{χ} , Y_{ν}^{ij})

$$\begin{aligned} R_2^{1\to 23} &\approx n_1 \Gamma_{1\to 23} \\ R_3^{12\to 34} &\equiv n_1^{eq} n_2^{eq} \langle \sigma v \rangle_{12\to 34} \end{aligned}$$

Important remarks

• Freeze-in + early matter era:

Longer EMD allows out-of-equilibrium processes with larger couplings

• Heavy neutrinos thermalization:

Thermalized heavy neutrinos: **all processes** (s-channels, t-channels, decays) are relevant for

DM production

Non-thermalized heavy neutrinos: neutrinos not abundant enough to decay and annihilate via

t-channel into FIMPs \Rightarrow only **s-channel** contributes for **DM production**.

Phenomenology – Indirect detection prospects

Conclusions

- We have studied the **DM neutrino portal via freeze-in in an early matter-era**;
- Discussed the **dynamics** of the Universe and DM throughout the **modified cosmic history**;
- Evaluated the **relevant constraints** of the model;
- If the **freeze-in** happens **during** an **early-matter** dominated epoch ⇒ **larger couplings** to SM;
- Indirect detection: early-matter era enhances cross sections relevant for indirect detection, can be tested with current experiments.

Thank you for your attention! / Merci beaucoup pour votre attention!

Backup slides

Parameters	Case A	Case B
m_{χ}	$[1 \text{ GeV}, 10^4 \text{ GeV}]$	$[m_S, 10^6 \text{ GeV}]$
m_S	$[m_{\chi}, 10^6 \text{ GeV}]$	$[1 \text{ GeV}, 10^4 \text{ GeV}]$
m_N	$[10 \text{ GeV}, 10^6 \text{ GeV}]$	
T_i	$[10^2 \text{ GeV}, 5 \times 10^{14} \text{ GeV}]$	
T_r	$[4 \text{ MeV}, T_i]$	

Table 1. The scan ranges for each input parameter in all cases. Note that Y_{ν}^{ij} is fully determined by m_N and $R = \mathbb{I}$, and λ_{χ} is chosen to give the observed dark matter relic density and is required to be less than 4π .

Parameter Space

in the interaction matrix Y_{ν}^{ij} , which is parameterized in the Casas-Ibarra scheme [64]:

$$Y_{\nu} = \frac{i\sqrt{2}}{v} U_{\text{PMNS}} \, m_{\nu}^{1/2} \, R \, m_N^{1/2}, \qquad (2.6)$$

where U_{PMNS} is the PMNS matrix containing three mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ and three phases $(\delta_{\text{CP}}, \alpha_1, \alpha_2)$ and is parametrized as

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \mathscr{P}$$
(2.7)

where $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$, and $\mathscr{P} = \text{diag}(e^{i\alpha_1}, e^{i\alpha_2}, 1)$. The value of these angles and phases are taken from the recent global fitting results [65] ¹. $m_{\nu/N}^{1/2}$ represent the diagonal matrices with square root of the eigen-masses $(\sqrt{m_{\nu/N}^i})$ in the diagonal entries and R is an extra complex orthogonal matrix $(R^T R = \mathbb{I})$ parameterized by three complex angles.

Phenomenology – Direct detection prospects

- **Direct detection experiments**: Scattering of DM with atomic nuclei in detectors; identify the deposited energies;
- Direct detection relevant vertices:

Case A: χ is DM

Phenomenology – Direct detection prospects

- **Direct detection experiments**: Scattering of DM with atomic nuclei in detectors; identify the deposited energies;
- Direct detection relevant vertices:

Case A: χ is DM

Very suppressed – not consider this case for direct detection

Phenomenology – Direct detection prospects

Direct detection experiments: Scattering of DM with atomic nuclei in detectors;

 $\sigma_{\chi N}^{SI}$ - Spin Independent DM-nucleon scattering cross section

Case A: χ is DM

30/05/2022

Phenomenology – Indirect detection prospects

Phenomenology – Indirect detection prospects

- Indirect detection experiments: Look for the product of the decay or annihilation of DM particles;
- In the case $m_{DM} > m_N \implies DM$ annihilates to N \implies N decays into SM particles;

• Experiments like INTEGRAL/SPI, Fermi-LAT and H.E.S.S. place stringent constraints on the dark matter annihilation cross-section.

The model – Neutrino portal to FIMP Dark Matter with an early matter era

- Why neutrino portal? Neutrinos are another intriguing piece of the cosmic puzzle;
- Freeze-in + Non-standard cosmologies + Higgs portal: Bernal, CC, Tenkanen arXiv: 1803.08064; Bernal, CC, Tenkanen, Vaskonen arXiv: 1806.11122; Hardy arXiv: 1804.06783;
- Freeze-out + Neutrino portal: Blennow et al, arXiv: 1903.00006;
- Freeze-out + Non-standard cosmologies (including early-matter era): Drees, F. Hajkarim arXiv:1711.05007; D'Eramo, Fernandez, and Profumo arXiv: 1703.04793; Hamdan and Unwin arXiv: 1710.03758;
- Freeze-in + Neutrino portal: Becker arXiv: 1806.08579; Chianese, King arXiv: 1806.10606; Chianese, Fu, King arXiv: 1910.12916;
- Freeze-in + Early-matter era + Neutrino portal: this work.

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

 $X\overline{X} \leftrightarrow SM$

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

Credits: Taylor Gray, Carleton U.

$$Y \equiv \frac{n_X}{s}, \ x \equiv \frac{m}{T}$$

 $X\overline{X} \leftrightarrow SM$

Dark Matter (DM) evolution:

$$\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma v \rangle \left(n_X^2 - \left(n_X^{eq} \right)^2 \right)$$

Interactions freeze-out when:

 $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$

Present DM abundance:

$$\Omega_{X,0}h^2 \equiv \frac{\rho_{X,0}}{\rho_{c,0}/h^2} \sim \frac{1}{\langle \sigma v \rangle} \sim \frac{1}{\lambda}$$

But: no detection so far; very constrained by experiments. [Arcadi et al. arXiv:1703.07364]

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: Taylor Gray, Carleton U.

$$Y \equiv \frac{n_X}{s}, x \equiv \frac{m}{T}$$

DM evolution:

$$\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM abundance:

$$\Omega_X h^2 \sim \Gamma_{\sigma \to XX} \sim \lambda$$

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: Taylor Gray, Carleton U.

$$Y \equiv \frac{n_X}{s}, x \equiv \frac{m}{T}$$

 $X\overline{X} \leftrightarrow SM$

DM evolution:

$$\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM abundance:

$$\Omega_X h^2 \sim \Gamma_{\sigma \to XX} \sim \lambda$$

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

Credits: Taylor Gray, Carleton U.

$$Y \equiv \frac{n_X}{s}, \ x \equiv \frac{m}{T}$$

 $X\overline{X} \leftrightarrow SM$

Dark Matter (DM) evolution:

$$\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma v \rangle \left(n_X^2 - \left(n_X^{eq} \right)^2 \right)$$

Interactions freeze-out when:

 $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$

Present DM abundance:

$$\Omega_{X,0}h^2 \equiv \frac{\rho_{X,0}}{\rho_{c,0}/h^2} \sim \frac{1}{\langle \sigma v \rangle} \sim \frac{1}{\lambda}$$

But: no detection so far; very constrained by experiments. [Arcadi et al. arXiv:1703.07364]

Freeze-out mechanism

• WIMP paradigm – no detection so far; very constrained by experiments.

Credits: Arcadi et. al, arXiv:1703.07364

Freeze-out mechanism

• WIMP paradigm – no detection so far; very constrained by experiments.

Credits: Arcadi et. al, arXiv:1703.07364

"The waning of the WIMP?"

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: Taylor Gray, Carleton U.

$$Y \equiv \frac{n_X}{s}, x \equiv \frac{m}{T}$$

DM evolution:

$$\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM abundance:

$$\Omega_X h^2 \sim \Gamma_{\sigma \to XX} \sim \lambda$$

Introduction — An early matter-dominated period

• End of matter dominated period: matter component decays into Standard Model (SM) particles ⇒ Dilution of DM number density;

Consequences:

- Freeze-out: Earlier freeze-out ⇒ Smaller couplings than in the standard case to match DM abundance;
- Freeze-in: Couplings to the visible sector are larger than usual freeze-in;

DM production during a **non-standard expansion** may result to

important experimental and observational ramifications.

 $\rho_M \gg \rho_R$, ρ_{DM} for some initial temperature T_i

- Hubble parameter: $H(t) = \sqrt{\rho_{tot}} / (\sqrt{3}M_P)$, with $\rho_{tot}(t) = \rho_R(t) + \rho_M(t)$;
- Solve:

$$\begin{cases} \dot{\rho}_M + 3H(t)\rho_M = -\rho_M \Gamma_M \\ \dot{\rho}_R + 4H(t)\rho_R = B_R \rho_M \Gamma_M \end{cases}$$

- The thermal history of the Universe has **4** important **periods**:
 - **Early radiation** domination (ERD);
 - Early matter domination (EMD);
 - Entropy production (EP);
 - Usual radiation domination (RD);

 T_{RH} - Inflationary reheating temperature;

- *T_i* Beginning of the early matter-era;
- T_e End of the isentropic early matter-era \Rightarrow entropy production starts;

 T_r - Decay of the matter component; usual radiation takes place; $T_r \gtrsim T_{BBN} \sim 4 \; {
m MeV}$

ERD:

• M is not dominant yet;

$$H_{RD} = \frac{\pi}{\sqrt{90}} \sqrt{g_*} \frac{T^2}{M_{Pl}}$$

• **Continuity** of H(T):

 $H_{RD}(T_i) = H_{EMD}(T_i)$

 $\Delta \equiv$ Amount of entropy production during EMD; related with the duration of the EMD \Rightarrow larger Δ , longer EMD;

EMD:

• T_i and T_r parametrize the early matter era.

EP:

- M decays (not instantaneously)
 only into the visible sector ⇒
 DM dilution;
- Entropy is not conserved: Entropy production $\Rightarrow T \sim a^{-3/8}$

$$H_{EP}(T) = H_{RD}(T_r) \frac{g_e(T)}{g_e(T_r)} \left(\frac{T}{T_r}\right)^4$$

Dark matter production – Relic abundance

• To compute the **DM relic abundance**, we need to know how its **number density** evolves:

$$\frac{dN_{DM}}{dt} = (\dot{n}_{DM} + 3H(t)n_{DM})a^3 = R_{DM}(t)a^3$$

$$N_{DM} = n_{DM}a^3$$
Reaction rate density

• **Reaction rate** densities:

 $1 \rightarrow 23 \text{ process:} \quad R_2^{1 \rightarrow 23} \approx n_1 \Gamma_{1 \rightarrow 23}$

12 \rightarrow 34 process: $R_3^{12 \rightarrow 34} \equiv n_1^{eq} n_2^{eq} \langle \sigma v \rangle_{12 \rightarrow 34}$

Dark matter production – Relic abundance

- Total yield: $Y_{DM,0} = Y_{ERD} + Y_{EMD} + Y_{EP} + Y_{RD}$
- DM relic abundance:

$$\Omega_{DM,0} \equiv \frac{\rho_{DM,0}}{\rho_{c,0}} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} n_{DM} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} Y_{DM,0} s_0 \simeq 0.26$$

When does the **DM Freeze-in production happen**?

- $1 \rightarrow 2 \text{ or resonant } 2 \rightarrow 2 \text{ processes: } T_{FI} \sim m_{decaying/mediator};$
- Otherwise: T_{FI} above the Boltzmann suppression of the heaviest particle involved.

Dark matter production - Constraints

Freeze-in conditions: Γ_{decays} , $\Gamma_{s-channels}$, $\Gamma_{t-channels} \ll H(T)$

Can we have the feeling of how the early matter era is constraining our model?

• Case:
$$\frac{\Gamma_{N_R \to \overline{\chi}S}}{H(T)} \ll 1$$

$$\lambda_{\chi} \ll \left(\frac{10^3 \text{GeV}}{m_N}\right)^{\frac{1}{2}} \left(\frac{g_e(100 \text{GeV})}{103.5}\right)^{\frac{1}{4}} \frac{0.01}{(1 - \epsilon^2)} \times \begin{cases} 2.5 \times 10^{-8} \frac{T}{100 \text{GeV}}, & \text{for } \Delta = 1\\ 1.5 \times 10^{-4} \left(\frac{T}{100 \text{GeV}}\right)^{\frac{3}{4}} \left(\frac{T_r}{4MeV}\right)^{\frac{1}{4}} \left(\frac{\Delta}{2 \times 10^{16}}\right)^{\frac{1}{4}}, & \text{for } \Delta = 2 \times 10^{16} \end{cases}$$

Longer EMD allows out-of-equilibrium processes with larger couplings

• Chemical equilibrium between **N** and **SM** driven by decays and inverse decays: $N \leftrightarrow Hl$ or $H \leftrightarrow Nl$;

• Heavy neutrinos **thermalized** when $\Gamma_{decays} > H$;

Thermalized heavy neutrinos: all processes (s-channels, t-channels, decays) are relevant for DM production;

 Non-thermalized heavy neutrinos: neutrinos not abundant enough to decay and annihilate via tchannel into FIMPs ⇒ s-channel annihilations contribute for DM production.

Phenomenology – Indirect detection prospects

- Indirect detection experiments: Look for the product of the decay or annihilation of DM particles;
- In the case $m_{DM} > m_N \implies DM$ annihilates to N \implies N decays into SM particles;

• Experiments like INTEGRAL/SPI, Fermi-LAT and H.E.S.S. place stringent constraints on the dark matter annihilation cross-section.

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

- Explain the smallness of the neutrino masses;
- Introduce 3 heavy neutrinos (one for each generation), not predicted by SM.
- New Yukawa coupling: $\overline{L_L^i} Y_{\nu}^{ij} \widetilde{H} \left(N_{\ell}^j \right)_R \longrightarrow$ contributes to the SM neutrinos mass;
- *m_N* is not constrained by any gauge symmetry *can be arbitrarily large (order of GUT scale);*

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & m_N \end{pmatrix}$$
 Diagonalizing
$$M_{\nu} = -M_D^T m_N^{-1} M_D$$

Yukawa coupling:

$$Y_{\nu} \sim \frac{\sqrt{m_{\nu}m_N}}{v}$$
 Completely defined if we fix m_N

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Heavy N case (with $m_N \gg m_S, m_{\chi}$)

 Large Yukawa coupling ⇒ N easily thermalizes with the cosmic bath;

Long EMDE \Rightarrow no thermalization.

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Light N case (with $m_N < m_S, m_{\chi}$)

• Freeze-in occurs at $T \gg m_N \Rightarrow$ decay widths suppressed by Yukawa couplings

Heavy neutrino is **never thermalized**.

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Light N case (with $m_N > m_S, m_{\chi}$)

• Long EMDE difficults thermalization;

