Neutrino Portal to FIMP Dark Matter with an Early Matter Era

Catarina M. Cosme

in collaboration with Maíra Dutra, Teng Ma, Yongcheng Wu, and Litao Yang

JHEP **2021,** 26 (2021)

Planck 2022, Ancienne École Polytechnique, Paris, 30 May 2022

Introduction – Evidence for Dark Matter (DM)

Galaxy Rotation Curves

Merging clusters (Bullet Cluster)

Structure formation

Properties of a DM candidate

- Stable or very long-lived (lifetime \geq age of the Universe);
- Cold (non-relativistic);
- Very small interaction with the electromagnetic field;
- It must have the observed abundance.

Cosmic Microwave Background (CMB)

Big Bang Nucleosynthesis (BBN)

Freeze-out

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_x = n_x \langle \sigma v \rangle \lesssim H$;
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0} h^2 \sim \frac{1}{\lambda}$ λ ;
,
- But:
	- **no detection** so far;
	- Large parameter space **ruled out by**

experiments. [Arcadi et al. **arXiv:1703.07364**]

vs Freeze-out

- Interactions **freeze-out** when: $\Gamma_x = n_x \langle \sigma v \rangle \lesssim H$;
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0} h^2 \sim \frac{1}{\lambda}$ λ ;
,
- But:
	- **no detection** so far;
	- Large parameter space **ruled out by**

experiments. [Arcadi et al. **arXiv:1703.07364**]

 $X\overline{X} \leftrightarrow SM$ $X\overline{X} \leftrightarrow SM$

vs

Freeze-out

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_x = n_x \langle \sigma v \rangle \lesssim H$;
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0} h^2 \sim \frac{1}{\lambda}$ λ ;
,
- But:
	- **no detection** so far;
	- Large parameter space **ruled out by**

experiments. [Arcadi et al. **arXiv:1703.07364**]

vs

Freeze-out Freeze-in

 $X\overline{X} \leftrightarrow SM$

- Interactions **freeze-out** when: $\Gamma_x = n_x \langle \sigma v \rangle \lesssim H$;
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0} h^2 \sim \frac{1}{\lambda}$ λ ;
,
- But:
	- **no detection** so far;
	- Large parameter space **ruled out by**

experiments. [Arcadi et al. **arXiv:1703.07364**]

vs $X\overline{X} \leftrightarrow SM$ **Freeze-out Freeze-in**

- Interactions **freeze-out** when: $\Gamma_x = n_x \langle \sigma v \rangle \lesssim H$;
- **WIMPs** Weakly Interacting Massive Particles;
- $\Omega_{X,0} h^2 \sim \frac{1}{\lambda}$ λ ;
,
- But:
	- **no detection** so far;
	- Large parameter space **ruled out by**

experiments. [Arcadi et al. **arXiv:1703.07364**]

- **FIMPs** Feebly Interacting Massive Particles;
- $\Omega_{X,0}h^2 \sim \lambda$;

• $\Gamma_X < H$ always;

- **Small couplings** to attain the **observed relic abundance**;
- Can evade stringent observational constraints;
- But: **hard** to **probe**.

Introduction - An early matter-dominated period

Credits: **Daniel Baumann,** *Cosmology, Part III Math Tripos*

30/05/2022

Introduction - An early matter-dominated period

Introduction - An early matter-dominated period

• **End** of matter dominated period: **matter** component **decays** into Standard Model (SM) particles;

Freeze-in: Couplings to the visible sector **need to be larger** than usual freeze-in

DM production during a **non-standard expansion** may result to

important **experimental and observational** ramifications.

The model – Neutrino portal to FIMP Dark Matter with an early matter era

• SM neutrinos mass: **Type-I seesaw** mechanism;

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{hidden}} + \mathcal{L}_{\text{seesaw}} + \mathcal{L}_{\text{portal}}
$$
\n
$$
\mathcal{L}_{\text{hidden}} = \overline{\chi}(i\partial - m_{\chi})\chi + |\partial_{\mu}S|^{2} - m_{S}^{2}|S|^{2} + V(S)
$$
\n
$$
\mathcal{L}_{\text{portal}} = -\left(\lambda_{\chi}^{i}S\overline{\chi}(N_{\ell}^{i})_{R} + h.c\right)
$$
\n
$$
\mathcal{L}_{\text{seesaw}} = \frac{1}{2}\overline{N}_{\ell}^{i}(i\partial\delta^{ij} - m_{N}^{ij})N_{\ell}^{j} - \left(\overline{L_{L}^{i}}Y_{\nu}^{ij}\widetilde{H}(N_{\ell}^{j})_{R} + h.c\right)
$$

The model – Neutrino portal to FIMP Dark Matter with an early matter era

• SM neutrinos mass: **Type-I seesaw** mechanism;

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{hidden}} + \mathcal{L}_{\text{seesaw}} + \mathcal{L}_{\text{portal}}
$$
\n
$$
\mathcal{L}_{\text{hidden}} = \overline{\chi}(i\partial - m_{\chi})\chi + |\partial_{\mu}S|^{2} - m_{S}^{2}|S|^{2} + V(S)
$$
\n
$$
\mathcal{L}_{\text{portal}} = -\left(\lambda_{\chi}^{i}S\overline{\chi}(N_{\ell}^{i})_{R} + h.c\right)
$$
\n
$$
\mathcal{L}_{\text{seesaw}} = \frac{1}{2}\overline{N}_{\ell}^{i}(i\partial\delta^{ij} - m_{N}^{ij})N_{\ell}^{j} - \left(\overline{L_{L}^{i}}\gamma_{\nu}^{ij}\widetilde{H}(N_{\ell}^{j})_{R} + h.c\right)
$$

- $\rho_M \gg \rho_R$, ρ_{DM} for some initial temperature T_i ;
- $H_{RD} = \frac{\pi}{\sqrt{9}}$ $rac{\pi}{90} \sqrt{g_*} \frac{T^2}{M_P}$ M_{Pl} ;

•
$$
H_{EMD}(T) = H_{RD}(T_r) \sqrt{\Delta \frac{4g_s(T)}{3g_e(T_r)}} \left(\frac{T}{T_r}\right)^{\frac{3}{2}}
$$

Δ ≡ Amount of **entropy production** during EMD; related with the duration of the EMD \Rightarrow **larger** Δ , **longer** EMD;

•
$$
H_{EP}(T) = H_{RD}(T_r) \frac{g_e(T)}{g_e(T_r)} \left(\frac{T}{T_r}\right)^4;
$$

Dark matter production – Processes contributing to DM

Processes contributing to the Freeze-in production:

 $\lambda_\chi\big|^2$

Dark matter production – Relic abundance

DM relic abundance

- DM production $\Box \longrightarrow \frac{n_{DM}}{s} \equiv Y_{DM}$ becomes constant;
- **DM relic abundance**:

$$
\Omega_{DM,0} \equiv \frac{\rho_{DM,0}}{\rho_{c,0}} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} n_{DM} = \frac{m_{DM}}{3H_0^2 M_{Pl}^2} Y_{DM,0} s_0 \simeq 0.26
$$

$$
Y_{DM,0} = Y_{ERD} + Y_{EMD} + Y_{EP} + Y_{RD}
$$

The yield Y_{DM} for some period is given by:

$$
Y_{DM}(T_f) - Y_{DM}(T_i) = \int_{T_i}^{T_f} dT \ g_{*s} \underbrace{\widehat{R_{DM}}}_{H/T \ s}
$$

Depends on the epoch

Has to take into account all the processes contributing to DM (depends on λ_χ , $Y_\nu^{ij})$

$$
R_2^{1 \to 23} \approx n_1 \Gamma_{1 \to 23}
$$

$$
R_3^{12 \to 34} \equiv n_1^{eq} n_2^{eq} \langle \sigma v \rangle_{12 \to 34}
$$

Important remarks

• **Freeze-in** + **early matter** era**:**

Longer EMD allows out-of-equilibrium processes with **larger couplings**

• **Heavy neutrinos thermalization:**

Thermalized heavy neutrinos: **all processes** (s-channels, t-channels, decays) are relevant for

DM production

Non-thermalized heavy neutrinos: neutrinos not abundant enough to decay and annihilate via

t-channel into FIMPs ⇒ only **s-channel** contributes for **DM production.**

Phenomenology – Indirect detection prospects

Conclusions

- We have studied the **DM neutrino portal via freeze-in in an early matter-era**;
- Discussed the **dynamics** of the Universe and DM throughout the **modified cosmic history**;
- Evaluated the **relevant constraints** of the model;
- If the **freeze-in** happens **during** an **early-matter** dominated epoch ⇒ **larger couplings** to SM;
- **Indirect detection**: **early-matter** era **enhances cross sections** relevant for indirect detection, can be **tested** with **current** experiments.

Thank you for your attention! / Merci beaucoup pour votre attention!

Backup slides

Parameters	Case A	Case B
m_χ	[1 GeV, 10^4 GeV]	$[m_S, 10^6 \text{ GeV}]$
$m_{\bm{S}}$	$[m_{\chi}, 10^6 \text{ GeV}]$	[1 GeV, 10^4 GeV]
m_N	[10 GeV, 10^6 GeV]	
T_i	[10^2 GeV, 5×10^{14} GeV]	
$T_{\bm r}$	[4 MeV, T_i]	

Table 1. The scan ranges for each input parameter in all cases. Note that Y_{ν}^{ij} is fully determined by m_N and $R = \mathbb{I}$, and λ_χ is chosen to give the observed dark matter relic density and is required to be less than 4π .

Parameter Space

in the interaction matrix Y_{ν}^{ij} , which is parameterized in the Casas-Ibarra scheme [64]:

$$
Y_{\nu} = \frac{i\sqrt{2}}{v} U_{\text{PMNS}} m_{\nu}^{1/2} R m_N^{1/2}, \qquad (2.6)
$$

where U_{PMNS} is the PMNS matrix containing three mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ and three phases $(\delta_{\rm CP}, \alpha_1, \alpha_2)$ and is parametrized as

$$
U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \mathscr{P} \tag{2.7}
$$

where $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$, and $\mathscr{P} = \text{diag}(e^{i\alpha_1}, e^{i\alpha_2}, 1)$. The value of these angles and phases are taken from the recent global fitting results [65] ¹. $m_{\nu/N}^{1/2}$ represent the diagonal matrices with square root of the eigen-masses $\left(\sqrt{m_{\nu/N}^i}\right)$ in the diagonal entries and R is an extra complex orthogonal matrix $(R^T R = \mathbb{I})$ parameterized by three complex angles.

Phenomenology – Direct detection prospects

- **Direct detection experiments**: Scattering of DM with atomic nuclei in detectors; identify the deposited energies;
- Direct detection relevant vertices:

Phenomenology – Direct detection prospects

- **Direct detection experiments**: Scattering of DM with atomic nuclei in detectors; identify the deposited energies;
- Direct detection relevant vertices:

Very suppressed – not consider this case for direct detection

Phenomenology – Direct detection prospects

Direct detection experiments: Scattering of DM with atomic nuclei in detectors;

 $\sigma_{\chi N}^{SI}$ - Spin Independent DM-nucleon scattering cross section **Case A:** χ is DM

30/05/2022

Phenomenology – Indirect detection prospects

Phenomenology – Indirect detection prospects

- **Indirect detection experiments**: Look for the product of the decay or annihilation of DM particles;
- In the case $m_{DM} > m_N$ **DM** annihilates to N **Number 2014** N decays into SM particles;

• Experiments like INTEGRAL/SPI, Fermi-LAT and H.E.S.S. place **stringent constraints** on the **dark matter annihilation cross-section**.

The model – Neutrino portal to FIMP Dark Matter with an early matter era

- **Why** neutrino portal? Neutrinos are another intriguing piece of the cosmic puzzle;
- **Freeze-in + Non-standard cosmologies + Higgs portal**: Bernal, **CC**, Tenkanen arXiv: 1803.08064; Bernal, **CC**, Tenkanen, Vaskonen arXiv: 1806.11122; Hardy arXiv: 1804.06783;
- **Freeze-out + Neutrino portal**: Blennow et al, arXiv: 1903.00006;
- **Freeze-out + Non-standard cosmologies** (including **early-matter era**): Drees, F. Hajkarim arXiv:1711.05007; D'Eramo, Fernandez, and Profumo arXiv: 1703.04793; Hamdan and Unwin arXiv: 1710.03758;
- **Freeze-in + Neutrino portal**: Becker arXiv: 1806.08579; Chianese, King arXiv: 1806.10606; Chianese, Fu, King arXiv: 1910.12916;
- **Freeze-in + Early-matter era + Neutrino portal**: this work.

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

 $X\overline{X} \leftrightarrow SM$

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

Credits: **Taylor Gray, Carleton U.**

$$
Y \equiv \frac{n_X}{s}, \quad x \equiv \frac{m}{T}
$$

 $X\overline{X} \leftrightarrow SM$

Dark Matter (DM) **evolution**:

$$
\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma v \rangle \left(n_X^2 - \left(n_X^{eq} \right)^2 \right)
$$

Interactions **freeze-out** when:

 $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$

Present DM **abundance**:

$$
\Omega_{X,0}h^2 \equiv \frac{\rho_{X,0}}{\rho_{c,0}/h^2} \sim \frac{1}{\langle \sigma v \rangle} \sim \frac{1}{\lambda}
$$

But: no detection so far; very constrained by experiments. [Arcadi et al. **arXiv:1703.07364**]

 $X\overline{X} \leftrightarrow SM$

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: **Taylor Gray, Carleton U.**

$$
Y \equiv \frac{n_X}{s}, \quad x \equiv \frac{m}{T}
$$

DM **evolution**:

$$
\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}
$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM **abundance**:

$$
\Omega_X h^2 \sim \Gamma_{\sigma \to X X} \sim \lambda
$$

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: **Taylor Gray, Carleton U.**

$$
Y \equiv \frac{n_X}{s}, \quad x \equiv \frac{m}{T}
$$

 $X\cancel{X} \leftrightarrow \textstyle{\mathsf{S}} M$

DM **evolution**:

$$
\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}
$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM **abundance**:

$$
\Omega_X h^2 \sim \Gamma_{\sigma \to X X} \sim \lambda
$$

Freeze-out mechanism (Weakly Interacting Massive Particles – WIMPs)

Credits: **Taylor Gray, Carleton U.**

$$
Y \equiv \frac{n_X}{s}, \quad x \equiv \frac{m}{T}
$$

 $X\overline{X} \leftrightarrow SM$

Dark Matter (DM) **evolution**:

$$
\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma v \rangle \left(n_X^2 - \left(n_X^{eq} \right)^2 \right)
$$

Interactions **freeze-out** when:

 $\Gamma_X = n_X \langle \sigma v \rangle \lesssim H$

Present DM **abundance**:

$$
\Omega_{X,0}h^2 \equiv \frac{\rho_{X,0}}{\rho_{c,0}/h^2} \sim \frac{1}{\langle \sigma v \rangle} \sim \frac{1}{\lambda}
$$

But: no detection so far; very constrained by experiments. [Arcadi et al. **arXiv:1703.07364**]

Freeze-out mechanism

• **WIMP paradigm –** no detection so far; very constrained by experiments.

Credits: **Arcadi et. al, arXiv:1703.07364**

Freeze-out mechanism

• **WIMP paradigm –** no detection so far; very constrained by experiments.

Credits: **Arcadi et. al, arXiv:1703.07364**

"The waning of the WIMP?"

Freeze-in mechanism - Feebly Interacting Massive Particles (FIMPs)

Credits: **Taylor Gray, Carleton U.**

$$
Y \equiv \frac{n_X}{s}, \quad x \equiv \frac{m}{T}
$$

 $X\cancel{X} \leftrightarrow \textstyle{\mathsf{S}} M$

DM **evolution**:

$$
\frac{dn_X}{dt} + 3Hn_X = 2\Gamma_{\sigma \to XX} \frac{K_1(m_\sigma/T)}{K_2(m_\sigma/T)} n_\sigma^{eq}
$$

Interactions rate:

 $\Gamma_X < H$ always

Present DM **abundance**:

$$
\Omega_X h^2 \sim \Gamma_{\sigma \to X X} \sim \lambda
$$

Introduction – An early matter-dominated period

• **End** of matter dominated period: **matter** component **decays** into Standard Model (SM) particles ⇒ **Dilution** of **DM** number density;

Consequences:

- **Freeze-out:** Earlier freeze-out ⇒ **Smaller couplings** than in the standard case to match **DM abundance**;
- **Freeze-in: Couplings** to the visible sector are **larger** than usual freeze-in;

DM production during a **non-standard expansion** may result to

important **experimental and observational** ramifications.

 $\rho_M \gg \rho_R$, ρ_{DM} for some initial temperature T_i

- Hubble parameter: $H(t) = \sqrt{\rho_{tot}}/(\sqrt{3}M_P)$, with $\rho_{tot}(t) = \rho_R(t) + \rho_M(t)$;
- Solve:

$$
\begin{cases}\n\dot{\rho}_M + 3H(t)\rho_M = -\rho_M \Gamma_M \\
\dot{\rho}_R + 4H(t)\rho_R = B_R \rho_M \Gamma_M\n\end{cases}
$$

- The thermal history of the Universe has **4** important **periods**:
	- **Early radiation** domination (ERD);
	- **Early matter** domination (EMD);
	- **Entropy production** (EP);
	- **Usual radiation** domination (RD);

 T_{RH} - Inflationary reheating temperature;

- $\boldsymbol{T_i}$ Beginning of the early matter-era;
- T_e End of the isentropic early matter-era \Rightarrow entropy production starts;

 $\bm{T_r}$ - Decay of the matter component; usual radiation takes place; $\bm{T_r} \gtrsim \bm{T_{BBN}} \sim \bm{4}$ MeV

ERD:

• **M** is **not dominant** yet;

$$
H_{RD} = \frac{\pi}{\sqrt{90}} \sqrt{g_*} \frac{T^2}{M_{Pl}}
$$

• **Continuity** of $H(T)$:

 $H_{RD}(T_i) = H_{EMD}(T_i)$

Δ ≡ Amount of **entropy production** during EMD; related with the duration of the EMD ⇒ **larger** Δ, **longer** EMD;

EMD:

 T_i and T_r parametrize the early matter era.

EP:

- **M decays** (not instantaneously) only into the visible sector ⇒ **DM dilution**;
- Entropy is not conserved: Entropy production $\Rightarrow T \sim a^{-3/8}$

$$
H_{EP}(T) = H_{RD}(T_r) \frac{g_e(T)}{g_e(T_r)} \left(\frac{T}{T_r}\right)^4
$$

Dark matter production - Relic abundance

• To compute the **DM relic abundance**, we need to know how its **number density** evolves:

$$
\frac{dN_{DM}}{dt} = (\dot{n}_{DM} + 3H(t)n_{DM})a^3 = R_{DM}(t)a^3
$$

Reaction rate density

• **Reaction rate** densities:

 $1 \rightarrow 23$ process: $R_2^{1 \rightarrow 23} \approx n_1 \Gamma_{1 \rightarrow 23}$

12 → 34 process: $R_3^{12 \to 34} \equiv n_1^{eq} n_2^{eq} \langle \sigma v \rangle_{12 \to 34}$

Dark matter production – Relic abundance

- Total yield: $Y_{DM,0} = Y_{ERD} + Y_{EMD} + Y_{EP} + Y_{RD}$
- **DM relic abundance**:

$$
\Omega_{DM,0} \equiv \frac{\rho_{DM,0}}{\rho_{c,0}} = \frac{m_{DM}}{3H_0^2M_{Pl}^2} n_{DM} = \frac{m_{DM}}{3H_0^2M_{Pl}^2} Y_{DM,0} s_0 \simeq 0.26
$$

When does the **DM Freeze-in production happen**?

- $1 \rightarrow 2$ or resonant $2 \rightarrow 2$ processes: $T_{FI} \sim m_{decaving/mediator}$;
- Otherwise: T_{FI} above the Boltzmann suppression of the heaviest particle involved.

Dark matter production - Constraints

Freeze-in conditions: Γ_{decays} , $\Gamma_{s-channels}$, $\Gamma_{t-channels} \ll H(T)$

Can we have the feeling of **how the early matter era is constraining our model?**

• Case:
$$
\frac{\Gamma_{N_R \to \overline{\chi} S}}{H(T)} \ll 1
$$

\n $\lambda_{\chi} \ll \left(\frac{10^3 \text{GeV}}{m_N}\right)^{\frac{1}{2}} \left(\frac{g_e(100 \text{GeV})}{103.5}\right)^{\frac{1}{4}} \frac{0.01}{(1 - \epsilon^2)} \times \left\{\n\begin{array}{cc}\n2.5 \times 10^{-8} \frac{T}{100 \text{GeV}}, & \text{for } \Delta = 1 \\
1.5 \times 10^{-4} \left(\frac{T}{100 \text{GeV}}\right)^{\frac{3}{4}} \left(\frac{T_r}{4 \text{MeV}}\right)^{\frac{1}{4}} \left(\frac{\Delta}{2 \times 10^{16}}\right)^{\frac{1}{4}}, & \text{for } \Delta = 2 \times 10^{16}\n\end{array}\n\right.$

Longer EMD allows out-of-equilibrium processes with **larger couplings**

• Chemical equilibrium between **N** and **SM** driven by decays and inverse decays: $N \leftrightarrow Hl$ or $H \leftrightarrow NI$;

• Heavy neutrinos **thermalized** when $\Gamma_{decays} > H$;

• **Thermalized** heavy neutrinos: **all processes** (s-channels, t-channels, decays) are relevant for **DM production**;

• **Non-thermalized** heavy neutrinos: neutrinos not abundant enough to decay and annihilate via tchannel into FIMPs ⇒ **s-channel annihilations** contribute for **DM production.**

Phenomenology – Indirect detection prospects

- **Indirect detection experiments**: Look for the product of the decay or annihilation of DM particles;
- In the case $m_{DM} > m_N$ **DM** annihilates to N **Number 2014** N decays into SM particles;

• Experiments like INTEGRAL/SPI, Fermi-LAT and H.E.S.S. place **stringent constraints** on the **dark matter annihilation cross-section**.

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

- Explain the smallness of the neutrino masses;
- Introduce 3 heavy neutrinos (one for each generation), not predicted by SM.
- New Yukawa coupling: $\overline{L_{L}^{i}}Y_{\nu}^{ij}H$ \sim $N^{\,j}_\ell$ \overline{R} contributes to the SM neutrinos mass;
- m_N is not constrained by any gauge symmetry \longrightarrow can be arbitrarily large (order of GUT scale);

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

$$
M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & m_N \end{pmatrix}
$$
 Diagonalizing
$$
M_{\nu} = - M_D^T m_N^{-1} M_D
$$

Yukawa coupling:

$$
Y_v \sim \frac{\sqrt{m_v m_N}}{v}
$$
 Complexly defined if we fix m_N

The model – Neutrino portal dark matter via Freeze-in in an early matter era

Type-I seesaw mechanism

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Heavy N case (with $m_N \gg m_S, m_\chi$)

Large Yukawa **coupling** \Rightarrow **N** easily thermalizes with the cosmic bath;

Long EMDE ⇒ **no thermalization**.

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Light N case (with $m_N < m_S, m_\chi$)

• **Freeze-in** occurs at $T \gg m_N \Rightarrow$ decay widths suppressed by Yukawa couplings

Heavy neutrino is **never thermalized**.

- Heavy neutrinos **thermalized** when $\Gamma > H$;
- **DM freeze-in** occurs between the **grey** vertical lines;

Light N case (with $m_N > m_S, m_\chi$)

• **Long EMDE** difficults thermalization;

