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- The relevance of the reheating dynamics is typically ignored with
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- Even in the case of non-instantaneous reheating models, it is
usually assumed that the inflaton decay rate, I',, is constant.

- However, this widely used assumption of constant can be
violated in generic models of perturbative reheating, e.g., when
the inflaton has a non-trivial potential.

- The understanding of the reheating era is essential for the dark
matter sector, especially in the context of the freeze-in DM
production.



Reheating dynamics

The dynamics of the early Universe is captured by the following
time-averaged Boltzmann equations for the inflaton field and the SM
radiation R
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We assume that the inflaton couples to the SM sector through the Higgs portal
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Reheating

We assume that the inflaton couples to the SM sector through the Higgs portal
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Reheating

The inflaton decay rate can be written as
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The inflaton decay rate can be written as

effective mass
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Let there be darkness

Let us assume that the dark sector is composed of spin-1, massive
particles X, charged under a dark, abelian U(1)x symmetry, with the
following Lagrangian density
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Gravitational production

The source terms are
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Gravitational production
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The DM freeze-in production

is very sensitive to the
dynamics of reheating.
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DM production through the contact operator
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We have demonstrated that the non-standard (n¥1) cosmologies
and the kinematical suppression of radiation production significantly
affect the thermal bath evolution and the DM production.
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the evolution of the radiation energy density, pr, are sensitive
to the inflaton potential shape.
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and the kinematical suppression of radiation production significantly
affect the thermal bath evolution and the DM production.

- In particular, we have shown that the duration of reheating and
the evolution of the radiation energy density, pr, are sensitive
to the inflaton potential shape.

- Moreover, we have discussed the role of kinematical
suppression in the reheating dynamics. We have demonstrated
that the non-zero mass of the Higgs boson leads to the
elongation of the reheating period, changes the pr(a) and T(a)
evolution, and conduces to the decrease of T,,...

- Finally, we have pointed out that the DM freeze-in production is
very sensitive to the reheating dynamics.
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EoM fo nflaton

The equation of motion (EoM) for the ¢ field is:
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Analytical solutions to the inflaton EoM after the end of inflation
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Particles production in a classical inflaton background

The inflaton field can be regarded as a homogeneous, classical field
that coherently oscillates in time.

For the interactions linear in ¢ = - P, the energy gain per unit
volume per unit time due to the pair production of f particles with
mass m can be calculated as

1dE, () , 2 4m?
alila’ g8 kool ‘ k’ Ji- 2
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where
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The matrix element Mg_,¢ accounts for the quantum process of two
particles production out of the vacuum.



Particles production in a classical inflaton background

For the interactions proportional to the ¢ = - P term, the
lowest-order non-vanishing S-matrix element takes the form

S =" Pt / d* xo(t) e Line () |i)
- ,
where

i) =10), |f) = 4141 [0).

If the envelope o(t) varies on the time-scale much longer than the
time-scale relevant for processes of particle creation, the S-matrix
element can be written as

SP = ip(t) D PreMoss (k) x @n)*a(ke — 268 (ps, + pr).
k



