Attenuation of Cosmic-Ray Up-Scattered Dark Matter

Helena Kolešová

University of Stavanger

With T. Bringmann (University of Oslo) and J. Alvey (University of Amsterdam)

Outline

- Standard direct detection limits
- 2 Direct detection limits based on cosmic ray up-scattered dark matter
- Improving ↑:
 - Further cosmic ray elements
 - Effect of nuclear form factors on attenuation
 - Effect of inelastic scattering on attenuation
 - 🔀 Taking into account specific DM models

Window for strongly interacting dark matter?

• Gas cloud cooling [Bhoonah et al.: Phys.Rev.D 100 (2019)]

Window for strongly interacting dark matter?

- Gas cloud cooling [Bhoonah et al.: Phys.Rev.D 100 (2019)]
- Updated constraints based on structure formation:
 - Milky Way satellite population [DES: PRL 126 (2021)]
 - Lyman alpha forest [Rogers et al.: PRL 128 (2022)]

Window for strongly interacting dark matter?

- Gas cloud cooling [Bhoonah et al.: Phys.Rev.D 100 (2019)]
- Updated constraints based on structure formation:
 - Milky Way satellite population [DES: PRL 126 (2021)]
 - Lyman alpha forest [Rogers et al.: PRL 128 (2022)]
- Resonant scattering in case of strong attractive ineraction [Xu and Farrar: 2101.00142]
- Finite thermalization efficiency for experiments like CRESST? [Mahdawi, Farrar: JCAP 10 (2018)]
- Room for strongly interacting DM candidates like QCD sexaquark? [Farrar, Wang, Xu: 2007.10378]

Cosmic ray up-scattered dark matter

- DM interacting strongly with baryons ⇒ DM accelerated by interactions with cosmic rays (≡CRDM)
- Flux of relativistic DM particles arriving to Earth ⇒ sub-GeV DM detectable by direct detection experiments like Xenon or neutrino experiments like MiniBooNE!

Cosmic ray up-scattered dark matter

- DM interacting strongly with baryons \Rightarrow DM accelerated by interactions with cosmic rays (\equiv CRDM)
- Flux of relativistic DM particles arriving to Earth ⇒ sub-GeV DM detectable by direct detection experiments like Xenon or neutrino experiments like MiniBooNE!

Cosmic ray up-scattered dark matter - updates

- CRDM limits are being widely updated/applied
- Example: [Xia, Xu and Zhou: JCAP 02 (2022)]
 - CRDM limits based on Xenon1T
 - Acceleration of DM also by heavier cosmic ray elements
 - Nuclear form factors, Monte Carlo simulations taken into account for attenuation of the CRDM flux in the Earth's crust
 - CRDM limits reaching to extremely large cross sections?

Outline

- Standard direct detection limits
- 2 Direct detection limits based on cosmic ray up-scattered dark matter
- Improving ↑:
 - Further cosmic ray elements
 - Effect of nuclear form factors on attenuation
 - Effect of inelastic scattering on attenuation
 - 🔀 Taking into account specific DM models

Intermezzo: Nuclear form factors

- Capture finite size of the nucleus: Fourrier transform of the charge density distribution
- E.g., charge density $\propto e^{-r/r_0} \Leftrightarrow$ dipole form factor:

$$F(Q^2) = rac{1}{(1+Q^2/\Lambda^2)^2}$$

- applicable for protons, more complicated shape for heavier nuclei
- Model independent form factors more accurate than Helm form factors

 ${
m d}\sigma/{
m d}Q^2\propto F^2(Q^2)\Rightarrow$ suppression of the cross section for large $Q^2!$

CRDM flux

- CR elements H, He, C, O included
- CR local interstellar spectra (LIS) based on [Boschini et al.: APJ 250:27 (2020)]
- Effective distance D_{eff} = 10 kpc considered
- "Constant" cross section with protons assumed: $d\sigma_{\chi p}/dT_{\chi} = \sigma_{SI}/T_{\chi}^{max} \times F^{2}(Q^{2})$ (NB: $Q^{2} = 2m_{\chi}T_{\chi}$)
- Coherent enhancement factor $A^2 \mu_{\chi N}^2 / \mu_{\chi P}^2$ included for heavier nuclei
- Model independent nuclear form-factors included in DM-CR cross sections

CRDM flux

• CR elements H, He, C, O included

- CR local interstellar spectra (LIS) based on [Boschini et al.: APJ 250:27 (2020)]
- Effective distance D_{eff} = 10 kpc considered
- "Constant" cross section with protons assumed: $d\sigma_{\chi p}/dT_{\chi} = \sigma_{SI}/T_{\chi}^{max} \times F^{2}(Q^{2})$ (NB: $Q^{2} = 2m_{\chi}T_{\chi}$)
- Coherent enhancement factor $A^2 \mu_{\chi N}^2 / \mu_{\chi p}^2$ included for heavier nuclei
- Model independent nuclear form-factors included in DM-CR cross sections

Attenuation in the Earth's crust

Energy loss equation:

$$rac{dT_{\chi}^{z}}{dz}=-\sum_{N}n_{N}\int_{0}^{\omega_{\chi}^{\max}}d\omega_{\chi}\,rac{d\sigma_{\chi N}}{d\omega_{\chi}}\omega_{\chi}$$

- n_N number density of nuclei N
- ω_χ DM energy loss $T_\chi T'_\chi$
 - "Constant" DM-nucleus scattering cross section assumed
 - Form factors \Rightarrow large suppression of stopping power for high-energy DM!
 - Inclusion of inelastic scattering changes the results dramatically!

Intermezzo: Inelastic scattering with nuclei

- Inspiration: neutral current neutrino-nucleus scattering
- For $E_{
 u}\gtrsim 0.1\,{
 m GeV}$ different inelastic processes appear:

(dependence of neutrino-oxygen differential cross section per nucleon on energy transfer $\omega \equiv E_{\nu} - E'_{\nu}$ obtained by GiBUU code [gibuu.hepforge.org])

Effect of inelastic scattering on CRDM attenuation

- Estimate of DM-nucleus inelastic cross section based on rescaled GiBUU results on neutrino-nucleus cross sections
- Preliminary results:
 - Solid lines: form factors + inelastic scattering taken into account
 - Dashed lines: only form factors
 - Dotted lines: no form factors

Effect of inelastic scattering on CRDM attenuation

- Estimate of DM-nucleus inelastic cross section based on rescaled GiBUU results on neutrino-nucleus cross sections
- Preliminary results:
 - Solid lines: form factors + inelastic scattering taken into account
 - Dashed lines: only form factors
 - Dotted lines: no form factors

Xenon1T limits

Q^2 dependent DM cross section?

- Different motivated Q^2 dependent cross sections studied
- $\bullet\,$ Example: DM-nucleon scattering via scalar mediator $\phi\,$

$$rac{d\sigma_{\chi N}}{dT_\chi} \propto rac{Q^2+4m_\chi^2}{Q^2+m_\phi^2}$$

 \Rightarrow CRDM flux enhanced for light DM and heavy mediator, suppressed otherwise

Conclusions

- Direct detection limits based on cosmic ray up-scattered dark matter complementary to standard direct detection and cosmological limits
- Inclusion of inelastic scattering crucial for obtaining realistic results for attenuation in Earth's crust
- Limits extended to larger DM masses compared to no-form-factor case
- Coming soon: limits in case of Q^2 -dependent cross sections
- To be implemented as a part of DarkSUSY program!

