Higgsino DM

Antonio Delgado University of Notre Dame

- Introduction: Problems with "standard" DM
- Solutions: Pure Higgsino
- Conclusion

Collaborators: E. Arganda, R. Morales and M. Quirós

Introduction

• DM may be the most stablished reason for physics BSM

 It turns out that a WIMP: a stable massive object with weak interactions and a mass around the EW scale reproduces the observed relic abundance.

 $\Omega h^2 \simeq 0.118$

• It has interesting experimental consequences.

• But:

• Most models (well-tempered, higgs portals,....) are excluded by DD bounds.

- Among the usual candidates for DM in the MSSM (neutralinos) the ones with less constrains (specially from direct detections):
 - Pure Higgsino with mass ~1.1-1.2 TeV.

Searching for a LSP Higgsino

arXiv: 2104.13827, 2107.06034, 2112.09198

- The Higgsino as the LSP can be challenging at the LHC
- Even though there are several states quasi degenerated the fact that the mass splitting is small makes it very challenging to detect the 'intra-higgsino' decays
- Direct decays from strongly produced particles are already covered by the existing searches.

• A more interesting possibility arises in a situation when you have the following cascade decay:

• We are going to design an strategy for discovery of a pair production of gluinos that decay to χ_3^0 and two light jets, that then decay to χ_1^0 plus a higgs decaying to b's.

signal 4j+4b+Emiss backgrounds: -QCD -Z+jets -W+jets -t t-bar -t t-bar -t t-bar + X -diboson+jets

- QCD will be handled with a large Emiss cut
- Diboson is negligible compare to single boson
- V+jets and events with tops are the most dangerous.
- Cuts at generator level:

$$\begin{array}{ll} p_T^{j_1} > 180\,{\rm GeV}\,, & p_T^{j_2} > 140\,{\rm GeV}\,, & p_T^{j_3} > 70\,{\rm GeV}\,, & p_T^{j_4} > 35\,{\rm GeV}\,, \\ p_T^{b_1} > 90\,{\rm GeV}\,, & p_T^{b_2} > 20\,{\rm GeV}\,, & p_T^{b_3} > 20\,{\rm GeV}\,, & p_T^{b_4} > 20\,{\rm GeV}\,. \end{array}$$

 $\begin{array}{ll} p_T^{j_1} > 200 \, {\rm GeV}\,, \quad p_T^{j_2} > 150 \, {\rm GeV}\,, \quad p_T^{j_3} > 80 \, {\rm GeV}\,, \quad p_T^{j_4} > 40 \, {\rm GeV}\\ loose: \quad p_T^{b_1} > 100 \, {\rm GeV}\,, \quad p_T^{b_2} > 60 \, {\rm GeV}\,,\\ tight: \quad p_T^{b_1} > 100 \, {\rm GeV}\,, \quad p_T^{b_2} > 60 \, {\rm GeV}\,, \quad p_T^{b_3} > 35 \, {\rm GeV}\,. \end{array}$

$$loose: N_b \ge 2, \quad N_j \ge 4, \quad N_\ell = 0$$
$$tight: N_b \ge 3, \quad N_j \ge 4, \quad N_\ell = 0$$

Loose selections Emiss > 150 GeV meff> 1300 GeV

Tight selections Emiss > 150 GeV meff> 1800 GeV

Process	signal	$t\bar{t}_{\rm had} + j$ (inc.)	$t\bar{t}_{\text{semilep}} + j \text{ (inc.)}$	V+jets	$t\bar{t}X + j$ (inc.)	$\mathcal{S}_{\mathrm{sta}}$	$\mathcal{S}_{\mathrm{sys}}$
Expected	20	2.19×10^6	$0.67 imes 10^6$	3.56×10^5	2.9×10^3	0.01	2×10^{-5}
selection cut	15.7	2.98×10^5	2.6×10^4	4435	505.5	0.03	1.5×10^{-4}
loose p_T cuts	7.7	7341	259.3	12.7	14.3	0.09	3.3×10^{-3}
$E_T^{\text{miss}} > 150 \text{ GeV}$	7.1	60.9	37.8	0	5.1	0.68	0.21
$m_{\rm eff} > 1800 { m GeV}$	5.5	1.0	1.5	0	0.2	2.69	2.30

SR2

Process	signal	$t\bar{t}_{\rm had} + j \ ({\rm inc.})$	$t\bar{t}_{\text{semilep}} + j \text{ (inc.)}$	V+jets	$t\bar{t}X + j$ (inc.)	$\mathcal{S}_{ ext{sta}}$	$\mathcal{S}_{ m sys}$
Expected	20	2.19×10^6	$0.67 imes 10^6$	3.56×10^5	2.9×10^3	0.01	2×10^{-5}
selection cut	9.8	2.78×10^4	1841	145.7	94.1	0.06	1.1×10^{-3}
tight p_T cuts	4.4	197.1	3.7	0	2.1	0.31	0.07
$E_T^{\text{miss}} > 150 \text{ GeV}$	4	1.9	0.7	0	0.4	1.95	1.66
$m_{\rm eff} > 1300 \ {\rm GeV}$	3.9	0	0.4	0	0	3.51	3.34

$$S_{\text{sta}} = \sqrt{-2\left((B+S)\log\left(\frac{B}{B+S}\right)+S\right)}$$

$$\mathcal{S}_{\text{sys}} = \sqrt{2\left((B+S)\log\left(\frac{(S+B)(B+\sigma_B^2)}{B^2+(S+B)\sigma_B^2}\right) - \frac{B^2}{\sigma_B^2}\log\left(1 + \frac{\sigma_B^2 S}{B(B+\sigma_B^2)}\right)\right)}$$

- We obtained significances around 2.5 for SR1 and around 3.5 for SR2.
- Extrapolating for 3 ab⁻¹ one gets significances above 5.

• An alternative signal could be when the Higgs decays to tau's.

• Generator level cuts:

$$\begin{array}{ll} p_T^{j_1} > 150\,{\rm GeV}\,, & p_T^{j_2} > 80\,{\rm GeV}\,, & p_T^{j_3} > 20\,{\rm GeV}\,, & p_T^{j_4} > 20\,{\rm GeV}\,, \\ & p_T^{\tau_1} > 20\,{\rm GeV}\,, & p_T^{\tau_2} > 20\,{\rm GeV}\,, \end{array}$$

• Signal selection:

$$N_{\tau} = 2, \quad N_j \ge 4, \quad N_{b,e,\mu} = 0$$

Cuts

$$egin{aligned} p_T^{j_1} > 170\,{
m GeV}\,, & p_T^{j_2} > 90\,{
m GeV}\,, \ E_T^{
m miss} > 150\,{
m GeV}\,, & |\Delta\phi(j_1,ec{p}_T^{
m miss})| > 0.4 \end{aligned}$$

- $m_{\rm eff} > 1000 \,\,{\rm GeV},$
- and $m_T^{\tau_1} + m_T^{\tau_2} > 450$ GeV.

tau tagging 90%

Process	Signal	$t\bar{t}+2j$ (inc.)	$t\bar{t} + X$	Diboson	V+jets	$\mathcal{S}_{\mathrm{sta}}$	$\mathcal{S}_{\mathrm{sys}}$
Expected	19.6	$1.47 imes 10^6$	1.1×10^3	1.12×10^4	$3.56 imes10^5$	0.01	4×10^{-5}
Selection cuts	5.6	3283.7	9.9	167.5	9952.4	0.05	1.4×10^{-3}
'MET cuts'	3.82	772.3	2.31	44.3	262.7	0.12	$1.2 imes 10^{-2}$
$m_{\rm eff} > 1000~{ m GeV}$	2.6	9.8	0.4	7.9	43.8	0.33	0.13
$m_T^{\tau_1} + m_T^{\tau_2} > 450 \text{ GeV}$	2.4	0.4	0	0	0	2.10	1.99
Projections $\mathcal{L} = 3 \text{ ab}^{-1}$	7.2	1.2	0	0	0	3.64	3.15

- The significance is not very high so....
- We find this as a complementary search to discover gluinos with higgses final states.

Conclusions

- In this talk I have shown three different scenarios of DM that scape DD detection:
 - Pure Higgisino (~1.1 TeV) scape current bounds
 - For this case I have shown different signals to discover a gluino that decays to a Bino which subsequently decay to the Higgsino plus higgses (there are other possible signals one can analyze)