Phenomenology of the Dark Matter sector in the Two Higgs Doublet with Complex Scalar Singlet extension

Juhi Dutta

with G. Moortgat-Pick, M. Schreiber (based on arXiv:2203.05509)

PLANCK 2022

II. Institute of Theoretical Physics, University of Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

May 30, 2022

1/21

May 30, 2022

Juhi Dutta with G. Moortgat-Pick, M. Schrei Phenomenology of the Dark Matter sector in

Motivation

• Presence of dark matter has been unequivocally established from experimental observations.

 Requisite Dark Matter (DM) candidate → electrically neutral, colourless, stable (over the lifetime of the Universe).

- Standard Model (SM) gauge singlet scalars provide a natural candidate for dark matter in extended Higgs sectors such as the Two Higgs doublet model.
- Also explains matter-antimatter asymmetry and potential source of gravitational waves.

Dorsch et.al JCAP05 (2017) 052, Drozd et.al JHEP11 (2014) 105, Dey et.al JHEP 09 (2019) 004 T.Biekotter et.al JHEP 10 (2021) 215

The Model: 2HDMS

- We consider a softly broken Z₂ symmetric Two Higgs Doublet Model (2HDM) (Branco et.al,hep-ph/1106.0034) and conserved Z'₂ symmetric singlet scalar potential.
- The quantum numbers of the fields are

Table: The quantum numbers of the Higgs doublets Φ_1, Φ_2 and complex singlet *S* under $Z_2 \times Z'_2$.

The Scalar Potential

 $V_{2HDMS} = V_{2HDM} + V_S + V_{HS}$

$$V_{2HDM} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.)$$

$$V_{S} = m_{S}^{2}S^{*}S + (\frac{m_{S'}^{2}}{2}S^{2} + h.c) + (\frac{\lambda_{1}''}{24}S^{4} + h.c) + \frac{\lambda_{1}''}{6}(S^{2}(S^{*}S) + h.c) + \frac{\lambda_{3}''}{4}(S^{*}S)^{2}$$

 $V_{HS} = [S^* S(\lambda_1' \Phi_1^{\dagger} \Phi_1 + \lambda_2' \Phi_2^{\dagger} \Phi_2)] + [S^2(\lambda_4' \Phi_1^{\dagger} \Phi_1 + \lambda_5' \Phi_2^{\dagger} \Phi_2) + h.c]$

Baum, Shah JHEP 12 (044) 2018

May 30, 2022

5/21

• Free parameters of the model are

 $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \alpha, \tan\beta, \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'', \lambda_3'', m_5^2, m_{5'}^2$

- In absence of a vacuum expectation value for the complex singlet, the Higgs sector, after electroweak symmetry breaking, consists of two scalars *h*, *H*, pseudoscalar *A*, and charged Higgses *H*[±].
- We focus on Type II THDM where the up-type quarks couple to Φ_2 and down-type quarks and leptons couple to Φ_1 .

May 30, 2022

Higgs(es) as portal to dark matter

Relevant couplings of the higgses to the DM,

$$\lambda_{hSS^*} \propto i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda'_1 \sin \alpha - \lambda'_2 \cos \alpha \tan \beta)$$

$$\lambda_{HSS^*} \propto -i rac{1}{\sqrt{1 + \tan^2 eta}} (\lambda_1' \cos lpha + \lambda_2' \sin lpha an eta)$$

Here, v is the vacuum expectation value (vev) such that $v^2 = v_1^2 + v_2^2$ where v_i (i = 1, 2) refers to the vev's of the Higgs doublets Φ_i and $\tan \beta = \frac{v_2}{v_1}$.

Phenomenological constraints

- Relic density upper bound from Planck.
- Spin independent (SI) DM-nucleon direct detection cross section from XENON-1T.
- The lightest CP-even Higgs mass constraints from LHC.
- Collider limits on heavy higgses from LHC and LEP.
- Flavour physics constraints: BR(B $\rightarrow s\gamma$), BR(B $\rightarrow \mu^+\mu^-$).

Model implementation/adoption in the following codes:

- Model building: SARAH
- Spectrum Generator: SARAH-SPheno
- DM constraints: micrOMEGAs
- Higgs constraints: HiggsBounds and HiggsSignals
- Flavour constraints and tree-level unitarity constraints: SPheno
- Madgraph-Pythia-Delphes-Madanalysis chain for the collider studies.

May 30, 2022

Constraints from dark matter observables

Figure: Variation of the relic density and direct detection cross-section with the mass of the DM candidate, m_{χ} .

May 30, 2022

10 / 21

Representative benchmarks

Parameters	BP1	BP2	BP3
λ_1	0.23	0.1	0.23
λ_2	0.25	0.26	0.26
λ_3	0.39	0.10	0.2
λ_4	-0.17	-0.10	-0.14
λ_5	0.001	0.10	0.10
m_{12}^2 (GeV ²)	-1.0×10^{5}	-1.0×10^{5}	-1.0×10^{5}
$\lambda_1^{\prime\prime}$	0.1	0.1	0.1
$\lambda_3^{\tilde{l}'}$	0.1	0.1	0.1
$\lambda_1^{\check{\prime}}$	0.042	0.04	2.0
λ_2^{\dagger}	0.042	0.001	0.01
$\lambda_{4}^{\overline{\prime}}$	0.1	0.1	0.1
λ'_5	0.1	0.1	0.1
m_h (GeV)	125.09	125.09	125.09
m_H (GeV)	724.4	816.4	821.7
m_A (GeV)	724.4	812.6	817.9
$m_{H^{\pm}}$ (GeV)	728.3	816.3	822.2
aneta	4.9	6.5	6.5
m_{DM} (GeV)	338.0	76.7	323.6
Ωh^2	0.058	0.119	0.05
$\sigma^p_{SI} imes 10^{10} \text{ (pb)}$	0.76	0.052	2.9
$\sigma_{SI}^{n} \times 10^{10} \text{ (pb)}$	0.78	0.054	3.1

Juhi Dutta with G. Moortgat-Pick, M. Schrei Phenomenology of the Dark Matter sector in

Decay modes of the Higgses

Decay Channels	Branching ratios for		
	BP1	BP2	BP3
$H ightarrow bar{b}$	0.14	0.29	0.24
$H ightarrow t ar{t}$	0.83	0.66	0.68
$H \to \tau \bar{\tau}$	0.02	0.45	0.04
$H o \chi ar\chi$	0.0	0.0	0.05
$A ightarrow bar{b}$	0.12	0.27	0.27
$A ightarrow t ar{t}$	0.86	0.69	0.69
$A o au ar{ au}$	0.02	0.04	0.04
$H^{\pm} ightarrow tar{b}$	0.97	0.96	0.96
$H^{\pm} ightarrow au ar{ u_{ au}}$	0.022	0.03	0.03

Table: Dominant decay modes of the heavy higgses for the benchmarks **BP1**, **BP2** and **BP3**.

Production channels: $b\bar{b}H,HA,t\bar{t}H$ (with $H \rightarrow \chi\bar{\chi}$)

- Signal channel: $2b + \not \in_T$
- SM Backgrounds: $bb\nu\bar{\nu}, b\bar{b}, t\bar{t}, t\bar{t}Z, ZZ, hZ, WWZ, ZZZ$

Dominant irreducible background arises from $b\bar{b}\nu\bar{\nu}$ and semi-leptonic $t\bar{t}$ events. However, signal events are characterised by high p_T b jets and large missing transverse momentum which potentially help in signal background discrimination.

Some useful kinematic variables

Juhi Dutta with G. Moortgat-Pick, M. Schrei Phenomenology of the Dark Matter sector in

May 30, 2022 14/21

Results

Process	$p_T(b), M_{bb}$	$M_{Eff} > 1.2 \text{ TeV}$	<i>∉</i> _T >650	$\Delta\Phi < 1.6$
ьБН	27	26	25	21
tŦΗ	12	12	11	10
HA	25	24	22	20
BP3	51			
$bb uar{ u}$	2040.9	330.3	147.6	124.3
ЬБ	8387.2	6697.5	65.6	4.1
ZZZ	3.1	1.5	0.51	0.2
WWZ	1.1	0.14	0.02	-
tτΖ	5.6	4.04	0.71	0.35
tŦ	478.3	401.9	29.6	1.13
<i>tī</i> (semi-lep)	2818.8	2500.3	338.5	16.61
Total background	146.4			

Table: The number of events after cuts for $\sqrt{s} = 3$ TeV at $\mathcal{L} = 5$ ab⁻¹.

$$S = \sqrt{2 \times \left[(s+b) \ln(1+\frac{s}{b}) - s \right]} \simeq 3.99. \tag{1}$$

15 / 21

where s and b are the total signal and background event numbers after applying cuts. May 30, 2022

Juhi Dutta with G. Moortgat-Pick, M. Schrei Phenomenology of the Dark Matter sector in

- Extension of the Two Higgs Doublet Model with a complex scalar singlet provides a potential dark matter candidate.
- The Higgs sector consists of two CP-even scalars h, H, a pseudoscalar A, and a pair of charged Higgses H^{\pm} as in the 2HDM.
- The DM candidate interacts with the SM via the CP-even scalar Higgses at tree-level.
- Stringent constraints on the parameter space from direct detection cross-section. Low λ'_2 favoured from current data.
- Possible to obtain suitable parameter points allowed by DM and higgs constraints and potential excess at future e⁺e⁻ colliders for 2b+∉_T final state.

Thank you!

Backup

Kinematic cuts

- Transverse momenta (p_T) of the two leading b-jets > 100, 80 GeV respectively.
- The invariant mass of the two b-jets within the mass window $80 < M_{b_1 b_2} < 130$ is rejected to remove contributions from Z and h bosons.

•
$$M_{eff} > 1.2$$
 TeV where $M_{eff} = \sum_i (p_{T_i}) + \not \in_T$

- $\not\!\!\!E_T > 650~{\rm GeV}$
- $\Delta \Phi(b_1, b_2) < 1.60$ reduces background from $t \bar{t}$ and $t \bar{t} Z$ sharply.

May 30, 2022

Scan parameters

Parameters	Values		
λ_1	0.23		
λ_2	0.25		
λ_3	0.39		
λ_4	-0.17		
λ_5	0.001		
m_{12}^2	-1.0×10^{5}		
$\lambda_1^{\prime\prime}$	0.1		
$\lambda_3^{\dagger\prime}$	0.1		
$\lambda_1^{\check{\prime}}$	0.042		
$\lambda_2^{\tilde{I}}$	0.042		
$\lambda_{A}^{\overline{\prime}}$	0.1		
λ_{5}^{\prime}	0.1		
$m_{S}^{2\prime}$	1.13×10^{5}		
m_h	125.1		
m _H	724.4		
m_A	724.4		
$m_{H^{\pm}}$	728.3		
tan β	5		

Table: List of parameters kept fixed for the scans for relic density.

Relic Density

Juhi Dutta with G. Moortgat-Pick, M. Schrei Phenomenology of the Dark Matter sector in

May 30, 2022 21/21