Natural Supersymmetric Dark Matter in Twin Higgs models

Marcin Badziak

University of Warsaw

Based on work with:

Giovanni Grilli di Cortona, Keisuke Harigaya, Michał Łukawski

PRL 124 (2020) 121803 [1911.03481], 2202.10488

See also:

PRL 120 (2018) 211803 [1711.11040] JHEP 1710 (2017) 109 [1707.09071] JHEP 1706 (2017) 065 [1703.02122]

Motivation

Supersymmetry is a beautiful framework for BSM but its minimal realizations face two major problems:

- 1. LHC constraints on stops and gluinos impose finetuning of the EW scale of at least 1% (typically worse if the Higgs mass constraint is taken into account)
- 2. The lightest SUSY particle (LSP) can play the role of dark matter only in fine-tuned corners of parameter space

Combining SUSY with Twin Higgs (TH) mechanism provides elegant solution to problem 1

In this talk:

Twin sparticles as a natural DM thermal relic in SUSY TH models

Outline

1. Intro to Twin Higgs models

- 2. Twin Neutralino Dark Matter PRL 124 (2020) 121803 [1911.03481]
- 3. Twin stau as Charged Dark Matter

Twin Higgs model in a nutshell

Chacko, Goh, Harnik '05

- The Higgs is a pNGB of a global SU(4) symmetry
- SU(4) enforced by Z₂ symmetry exchanging two copies of the SM $\xrightarrow{\text{SM}} H \xleftarrow{\mathbb{Z}_2} H' \xleftarrow{\text{mirror}} H'$

$$V = \lambda (|H'|^2 + |H|^2)^2 - m^2 (|H'|^2 + |H|^2) + \Delta \lambda (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$SU(4) \text{ symmetric}$$

$$SU(4) \text{ spontaneously broken to SU(3)} \rightarrow 7 \text{ NGB}:$$

$$SU(4) \text{ breaking}$$

$$U = \lambda (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \nu (|H'|^4 + |H|^4) + \Delta m^2 |H^2|$$

$$U = \mu (|H|^4) + \Delta m^2 |H^2$$

Fine-tuning in Twin Higgs models

• Maximal gain in fine-tuning depends on the size of λ :

$$\frac{2\lambda}{\lambda_{\rm SM}}$$
 $\lambda_{\rm SM} \approx 0.13$

- TH model solves only the little hierarchy problem so must be UV completed e.g. by SUSY to solve the big hierarchy problem of the SM
- E.g. Tuning from higgsinos (relevant for DM) suppressed for large λ :

$$\Delta_{\mu} = \frac{\mu^2}{4\lambda v^2}$$

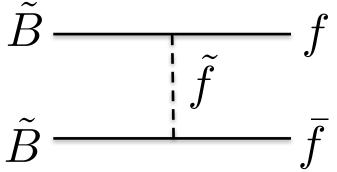
• λ depends on particular SUSY UV completion of TH models

Falkowski, Pokorski, Schmaltz '06 Chang, Hall, Weiner '06 Craig, Howe '13 Katz et al. '16 MB, Harigaya '17

SUSY D-term Twin Higgs

MB, Harigaya '17

- $\lambda \sim 0.5$ can be obtained in D-term TH model
- Only 10% tuning of the EW scale for 2 TeV stop and gluino and 1 TeV Higgsino

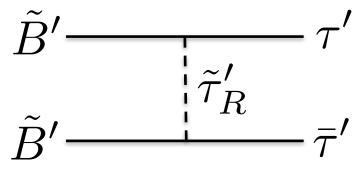

Status of MSSM neutralino DM

• In MSSM there are 4 neutralinos:

 $\begin{pmatrix} \mathsf{Bino}\ M_1 & 0 & -M_Z \sin\theta_W \cos\beta & M_Z \sin\theta_W \sin\beta \\ 0 & \mathsf{Wino}\ M_2 & M_Z \cos\theta_W \cos\beta & -M_Z \cos\theta_W \sin\beta \\ -M_Z \sin\theta_W \cos\beta & M_Z \cos\theta_W \cos\beta & 0 \\ M_Z \sin\theta_W \sin\beta & -M_Z \cos\theta_W \sin\beta & -\mu & 0 \end{pmatrix}$

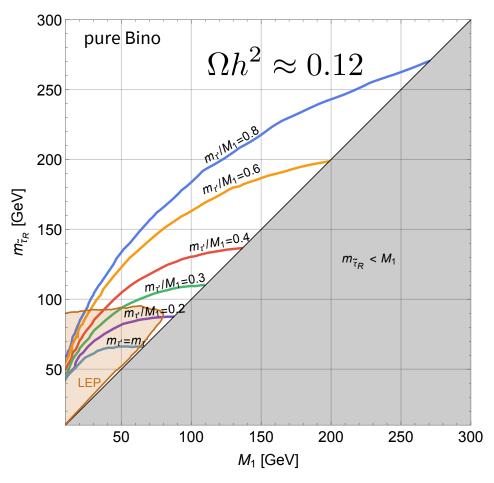
- Pure Bino: generically $\Omega h^2 \gg 1$ Relic abundance of DM from Planck
- Pure Higgsino: $\Omega h^2 \approx 0.12 \Rightarrow m_{\text{LSP}} \approx 1 \text{ TeV}$
- Pure Wino: $\Omega h^2 \approx 0.12 \Rightarrow m_{\text{LSP}} \approx 3 \text{ TeV}$

Annihilation of MSSM Bino Dark Matter

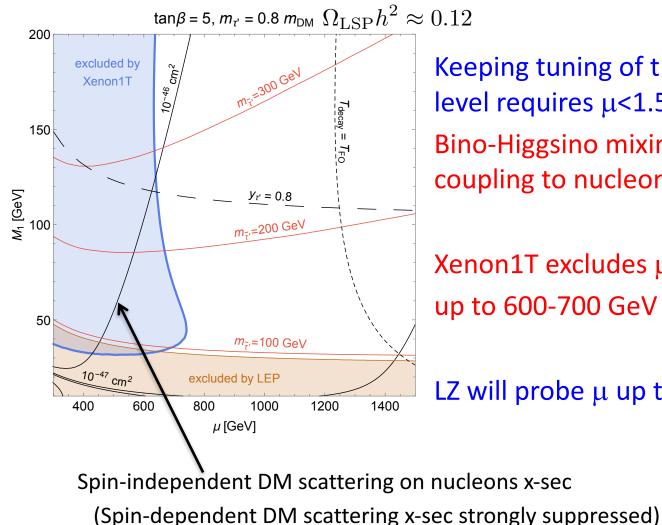


- Annihilation x-sec strongly suppressed due to lower bounds on sfermion masses from LEP/LHC
- chirality suppression of s-wave annihilation into SM fermions

Ways to get $\Omega h^2 \approx 0.12$:

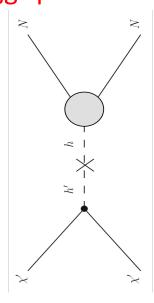

- Include mixing with higgsino (aka well-tempered neutralino) -> excluded by direct detection experiments
- Fine-tuning of the parameter space e.g. small stau-bino mass splitting to allow for stau co-annihilations

Annihilation of Twin Bino Dark Matter


- chirality suppression of s-wave annihilation into twin fermions may be avoided if $m_{f'} \gg m_f$
- Z₂ breaking in Yukawa couplings motivated by the solution to too large N_{eff} problem of TH models Barbieri, Hall, Harigaya '16, '17
- lower bounds on sfermion masses still relevant but (promptly decaying) right-handed stau remains unconstrained by the LHC

Twin Bino Dark Matter

For $m_{\tau'}$ >30 GeV large range of DM masses allowed without relying on coannihilatons


Twin Bino-Higgsino Dark Matter

Keeping tuning of the EW scale at 10% MB, Harigaya '17 level requires μ <1.5 TeV **Bino-Higgsino mixing induces DM** coupling to nucleons via Higgs portal

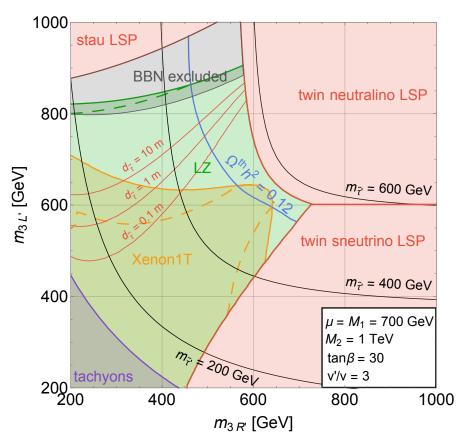
Xenon1T excludes μ up to 600-700 GeV

M. Badziak (Warsaw)

Charged dark matter in SUSY TH models

Twin stau dark matter

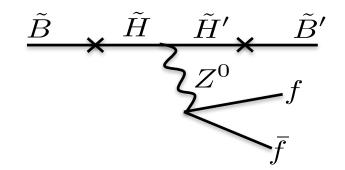
- Twin stau LSP may also play a role of (selfinteracting) dark matter
- Twin stau has twin electromagnetic charge charged DM
- Charged DM constrained by anistropy of DM Agrawal, Cyr-Racine, Randall, Scholtz '16 velocity distribution in galaxy halos


$m_{\widetilde{ au}} \gtrsim 200~{ m GeV}$ required

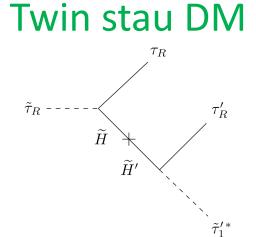
Twin stau dark matter

- Twin stau can be the LSP only for large enough leftright mixing
- Correct relic abundance picks the twin stau mass of about 300-400 GeV (above the bound on charged DM)
- Small part of the parameter space excluded by Xenon1T
- Most of the parameter space will be probed by LZ

Twin stau dark matter



For light bino and wino the mass of twin stau thermal DM can exceed 500 GeV


LHC signatures with long-lived NLSP

• NLSP is the lightest MSSM sparticle with generically suppressed decay width

Twin neutralino DM

 MSSM bino decay to LSP typically displaced

 MSSM stau may be observed as a disappearing track or a long-lived particle at the LHC

Summary

- SUSY Twin Higgs models can elegantly solve the hierarchy problem of the SM and provide new natural dark matter candidates
- Twin neutralino LSP is a natural DM candidate fixing shortcomings of the MSSM neutralino
- Twin stau LSP is a natural candidate for charged DM
- Spin-independent scattering cross-section for twin neutralino and stau naturally suppressed but within reach of LZ
- Complementary tests at the LHC:
- NLSP is the lightest MSSM state which is typically long-lived leading to displaced vertices or (disappearing) charged tracks
- right-handed MSSM stau mass in the range of several hundred GeV

BACKUP

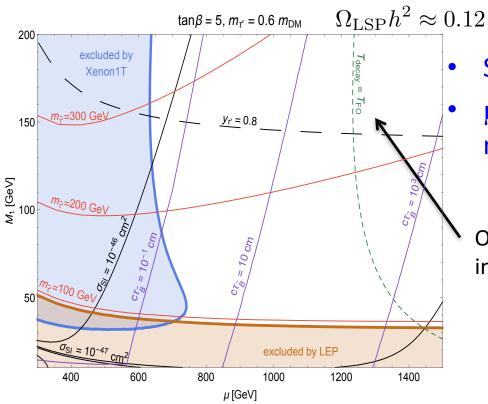
The Higgs mass miracle in SUSY Twin Higgs models

• In SUSY Twin Higgs SU(4) is broken by the EW gauge interaction

 $V_D = \frac{g^2 + g'^2}{8} \left[(|H_u|^2 - |H_d|^2)^2 + (|H_u'|^2 - |H_d'|^2)^2 \right] \longrightarrow \frac{g^2 + g'^2}{8} \cos^2(2\beta) \equiv \Delta \lambda_{\text{SUSY}} \approx 0.07 \cos^2(2\beta)$

• The tree-level Higgs mass is given by

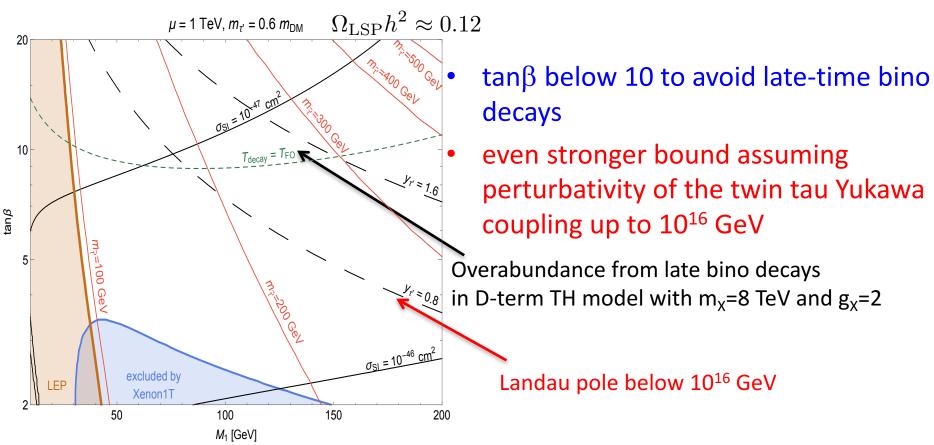
$$(m_h^2)_{\text{tree}} \approx 2 M_Z^2 \cos^2(2\beta) \left(1 - \frac{v^2}{f^2}\right) + \mathcal{O}(\Delta \lambda / \lambda)$$

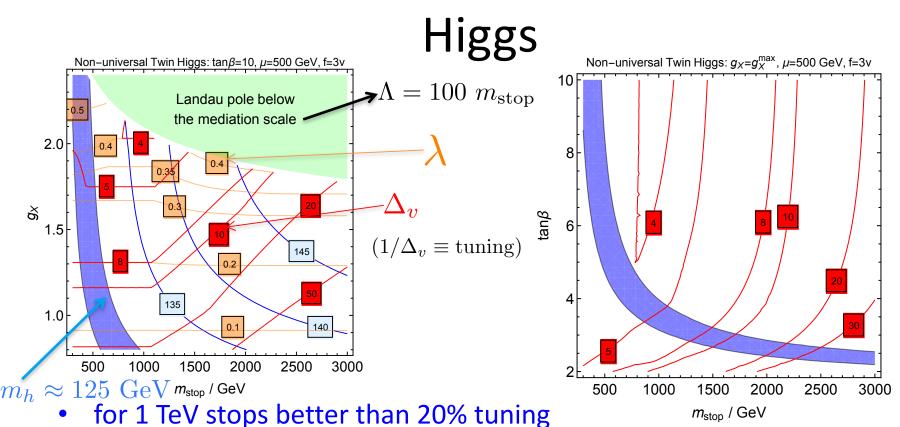

- The Higgs mass enhanced by a factor of $\sqrt{2}$ (after Z₂ breaking which is needed anyway) as compared to MSSM.
- $m_h \approx 125 \text{ GeV}$ obtained at tree level in the limit of large $\tan \beta$!

Non-thermal production of \tilde{B}' from \tilde{B} decays

- \tilde{B} is typically long lived due to small mass splitting with \tilde{B}' and small coupling to the twin sector
- Late \tilde{B} decays overproduce \tilde{B}' if \tilde{B} decays after freeze-out

$$\Delta m_{\tilde{B}} \equiv m_{\tilde{B}} - m_{\tilde{B}'} \approx \frac{g_1^2 \left(v'^2 - v^2 \right)}{2\mu^2} |\mu s_{2\beta} + M_1| \xrightarrow{\tilde{B}} \times \frac{\tilde{H}}{\sqrt{2}} \frac{\tilde{H}' \times \tilde{B}'}{Z^0} \times \frac{\tilde{H}' \times \tilde{B}'}{J^0} \times \frac{\tilde{H}' \times \tilde{H}' \times \tilde{B}'}{J^0} \times \frac{\tilde{H}' \times \tilde{H}' \times \tilde{H}'$$


Upper bound on $\boldsymbol{\mu}$


- Strong dependence of $\Gamma_{ ilde{B}}$ on μ
 - μ bounded from above not only by naturalness but relic abundance too!

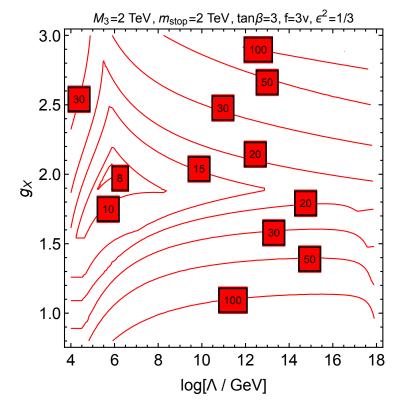
Overabundance from late bino decays in D-term TH model with m_{χ} =8 TeV and g_{χ} =2

Upper bound on $tan\beta$

SUSY D-term flavor non-universal Twin

- 10% tuning beyond the reach of HL-LHC
- Improvement by a factor 7 as compared to MSSM with nondecoupling D-term

Asymptotically Free SUSY Twin Higgs


The non-abelian model can be extended to make the new interaction asymptotically free! $SU(2)_{x} \times SU(2)'_{x}$ $SU(2)_X | SU(2)'_X$ 3-2-13'-2'-1' $W = Y(\Sigma^{2} - v_{\Sigma}^{2})$ $\mathsf{SU(2)}_{\mathsf{D}}$ $\mathsf{right-handed top \& up}$ \mathcal{H} (1, 2, 1/2)2 \mathcal{H}' $\mathbf{2}$ (1, 2, 1/2)Σ $\mathbf{2}$ $\mathbf{2}$ $S\overar{S}$ $\mathbf{2}$ $\mathbf{2}$ $\frac{S'}{\bar{S}'}$ $\mathbf{2}$ $\mathbf{2}$ \bar{Q}_R $(\bar{\mathbf{3}}, \mathbf{1}, -2/3)$ $\mathbf{2}$ \bar{Q}'_R (3, 1, -2/3) $\mathbf{2}$ $W = \kappa \Xi (S\bar{S} - M^2) + \kappa \Xi' (S'\bar{S}' - M^2)$ $V_{\text{soft}} = m_S^2 (|S|^2 + |\bar{S}|^2 + |S'|^2 + |\bar{S}'|^2)$ SUPE \bar{E} $\mathbf{2}$ (1, 1, 1) \bar{E}' 2 (1, 1, 1) $E_{1,2}$ (1, 1, -1) $E'_{1,2}$ (1, 1, -1) $\phi_u \\ \phi'_u$ (1, 2, 1/2)(1, 2, 1/2) $H_{d}, \phi_{d,1,2}$ (1, 2, -1/2) $H'_{d}, \phi'_{d,1,2}$ (1, 2, -1/2)

Twin states charged under different SU(2)s at high scales

M. Badziak (Warsaw)

Asymptotically Free SUSY Twin Higgs

- Twin Higgs mechanism works perturbatively even for mediation around the Planck scale
- Tuning better than 5% even for gravity mediation of SUSY breaking

