

# Closing the window on WIMP Dark Matter

Salvatore Bottaro

Based on: 2107.09688 and 2205.04486

with D.Buttazzo, M.Costa, R.Franceschini, P.Panci, D.Redigolo, L.Vittorio

- Upcoming experiments:
  - 1. Direct Detection (LZ, DARWIN, XenonNT...)
  - 2. Indirect Detection (CTA, LHAASO)
  - 3. Muon collider (?)

- Upcoming experiments:
  - 1. Direct Detection (LZ, DARWIN, XenonNT...)
  - 2. Indirect Detection (CTA, LHAASO)
  - 3. Muon collider (?)
- Minimal, predictive theoretical framework:
  - 1. SM increased with a single EW multiplet
  - 2. Three parameters (n, Y, M)
  - 3. M determined by gauge interactions through freeze-out

- Upcoming experiments:
  - 1. Direct Detection (LZ, DARWIN, XenonNT...)
  - 2. Indirect Detection (CTA, LHAASO)
  - 3. Muon collider (?)
- Minimal, predictive theoretical framework:
  - 1. SM increased with a single EW multiplet
  - 2. Three parameters (n, Y, M)
  - 3. M determined by gauge interactions through freeze-out
- Not fully nor systematically explored

#### 2107.09688

#### 2107.09688

$$\begin{split} \mathscr{L}_{\rm s} &= \frac{1}{2} \left( D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left( i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{split}$$

$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left( D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left( i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$



Naturally vanishing coupling to the Z-boson

$$\begin{split} \mathscr{L}_{\rm s} &= \frac{1}{2} \left( D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left( i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{split}$$

$$(1, n)_0 \qquad \qquad \begin{array}{c} \chi^+ \\ \chi^0 \\ \chi^- \end{array} \qquad \Delta M = (167 \pm 4) \text{ MeV}$$

 $\underset{x^{+}}{\overset{W^{+}}{\underset{x^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{+}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset{\chi^{0}}{\overset$ 

Cheng '98 Feng '99 Gherghetta '99 Ibe '12 McKay '18

$$\begin{split} \mathscr{L}_{\rm s} &= \frac{1}{2} \left( D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \,, \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left( i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{split}$$

$$(1, n)_{0} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{-}} \xrightarrow{\chi^{0}}_{\chi^{-}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{0}}_{\chi^{\pm}} \xrightarrow{\chi^{0}}_{\chi^{\pm}} \xrightarrow{\chi^{0}}_{\chi^{0}} \xrightarrow{\chi^{+}}_{\chi^{0}} \xrightarrow{\chi^{0}}_{\chi^{\pm}} \xrightarrow{\chi^{0}}_{\chi^{0}} \xrightarrow{\chi^{0}}_{\chi^{\pm}} \xrightarrow{\chi^{0}}_{\chi^{0}} \xrightarrow{\chi^{0}}_{\chi^{\pm}} \xrightarrow{\chi^{0}}_{\chi^{0}} \xrightarrow{\chi^{0}}_{$$

Boltzmann equation:

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{s(x)}{xH(x)} \langle \sigma v \rangle \left( 1 - \frac{x}{3g_*(x)} \frac{\mathrm{d}g_*}{\mathrm{d}x} \right) \left( Y^2(x) - Y^2_{eq}(x) \right)$$

Boltzmann equation:

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{s(x)}{xH(x)} (\sigma v) \left(1 - \frac{x}{3g_*(x)} \frac{\mathrm{d}g_*}{\mathrm{d}x}\right) (Y^2(x) - Y^2_{eq}(x))$$
WHICH CROSS-SECTION?





... but inaccurate! Important physics is missing

- Sommerfeld enhancement
- Bound states formation



#### ... but inaccurate! Important physics is missing

- Sommerfeld enhancement
- Bound states formation

Large non-perturbative, non-relativistic effects!

# Sommerfeld Effect (SE) & Bound States (BS)

SE: Potentials deform the wave function of incoming particles

$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

# Sommerfeld Effect (SE) & Bound States (BS)

SE: Potentials deform the wave function of incoming particles

$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

BS: Particle-Antiparticle pair bind into a wimponium bound state emitting a gauge boson



# Sommerfeld Effect (SE) & Bound States (BS)

SE: Potentials deform the wave function of incoming particles

$$-\frac{\nabla^2 \psi}{M_{\chi}} + V\psi = E\psi \qquad \quad \langle \sigma v \rangle_0 \to \begin{cases} \langle \sigma v \rangle = S_{Som}(x) \langle \sigma v \rangle_0 \\ S_{Som}(x) \propto |\psi(0)|^2 \end{cases}$$

**BS**: Particle-Antiparticle pair bind into a wimponium bound state emitting a gauge boson



The pair in the bound state later annihilates into SM (annihilation enhancement)

$$\text{Mitridate `17} \qquad S(x) = S_{Som}(x) + \left[\frac{\langle \sigma v \rangle_0}{\langle \sigma_I v \rangle} + \frac{g_{\chi}^2 \langle \sigma v \rangle_0 M_{\chi}^3}{2g_I \Gamma_{ann}} \left(\frac{1}{4\pi x}\right)^{\frac{3}{2}} e^{-xE_{B_I}/M_{\chi}}\right]^{-1}$$



```
Real WIMPs - Odd n, Y = 0
```





$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi \left( f_q m_q \bar{q}q + f_G G_{\mu\nu} G^{\mu\nu} \right) + \frac{g_q}{M_\chi} \bar{\chi} i \partial^\mu \gamma^\nu \chi \mathcal{O}^q_{\mu\nu}$$



$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi (f_q) n_q \bar{q}q + (f_G G_{\mu\nu} G^{\mu\nu}) + (g_q) M_{\chi} \bar{\chi} i \partial^{\mu} \gamma^{\nu} \chi \mathcal{O}^q_{\mu\nu}$$

Hisano '05, Hisano '10



$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi \left(f_q m_q \bar{q}q + f_{\text{C}} G_{\mu\nu} G^{\mu\nu}\right) + \frac{g_q}{M_{\chi}} \bar{\chi} i \partial^{\mu} \gamma^{\nu} \chi \mathcal{O}^q_{\mu\nu}$$

Hisano '05, Hisano '10

Flag '20





#### 2205.04486

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left( i \not\!\!D - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left( i \not{D} - M_{\chi} \right) \chi + \frac{y_{0}}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_{0} + \frac{y_{+}}{\Lambda_{\mathrm{UV}}} \mathcal{O}_{+} + \mathrm{h.c.}$$
$$\mathcal{O}_{0} = \frac{1}{2(4Y)!} \left( \overline{\chi} (T^{a})^{2Y} \chi^{c} \right) \left[ (H^{c\dagger}) \frac{\sigma^{a}}{2} H \right]^{2Y} \xrightarrow{\chi^{c}} \delta m_{0} = 4y_{0} c_{nY0} \Lambda_{\mathrm{UV}} \left( \frac{v}{\sqrt{2} \Lambda_{\mathrm{UV}}} \right)^{4Y}$$





$$\mathscr{L}_{Z} = \frac{ieY}{\sin\theta_{W}\cos\theta_{W}} \overline{\chi}_{0} \mathscr{Z}\chi_{\rm DM} \longrightarrow \frac{1}{2}\mu v_{\rm rel}^{2} < \delta m_{0} , \quad \mu = \frac{M_{\rm DM}m_{N}}{M_{\rm DM} + m_{N}}$$



$$\mathscr{L}_{Z} = \frac{ieY}{\sin\theta_{W}\cos\theta_{W}} \overline{\chi}_{0} \mathcal{Z}\chi_{\rm DM} \longrightarrow \frac{1}{2}\mu v_{\rm rel}^{2} < \delta m_{0} , \quad \mu = \frac{M_{\rm DM}m_{N}}{M_{\rm DM} + m_{N}}$$
$$\Gamma(\chi_{0} \rightarrow \chi_{\rm DM}, SM) > \tau^{-1}$$

 $\Gamma(\chi_0 \to \chi_{\rm DM} SM) > \tau_{\rm BBN}^{-1}$ 



$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left( i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left( \overline{\chi} (T^a)^{2Y} \chi^c \right) \left[ (H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$

$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left( i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left( \overline{\chi} (T^a)^{2Y} \chi^c \right) \left[ (H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$

$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$

$$\Delta M_{\text{gauge}} = 167 \text{ MeV} \left( Q^2 + \frac{2QY}{\cos \theta_W} \right) \longrightarrow$$

 $\mathcal{O}_+$  necessary to make DM the lightest component of the multiplet unless

$$Y = 0, \quad |Y| = \frac{n-1}{2}$$

$$\mathscr{L}_{\mathrm{D}} = \overline{\chi} \left( i \not{\!\!D} - M_{\chi} \right) \chi + \frac{y_0}{\Lambda_{\mathrm{UV}}^{4Y-1}} \mathcal{O}_0 + \frac{y_+}{\Lambda_{\mathrm{UV}}} \mathcal{O}_+ + \mathrm{h.c.}$$
$$\mathcal{O}_0 = \frac{1}{2(4Y)!} \left( \overline{\chi} (T^a)^{2Y} \chi^c \right) \left[ (H^{c\dagger}) \frac{\sigma^a}{2} H \right]^{2Y}$$

$$\mathcal{O}_{+} = -\overline{\chi}T^{a}\chi H^{\dagger}\frac{\sigma^{a}}{2}H$$

Surviving candidates:

- Y=<sup>1</sup>/<sub>2</sub>, n<13 (perturbative unitarity bound)
- Y=1, n= 3, 5 (perturbativity of mass splitting)
- Y>1 are non-perturbative!



$$\mathscr{L}_{\text{eff}}^{\text{SI}} = \bar{\chi}\chi \left( f_q m_q \bar{q}q + f_G G_{\mu\nu} G^{\mu\nu} \right) + \frac{g_q}{M_\chi} \bar{\chi} i \partial^\mu \gamma^\nu \chi \mathcal{O}^q_{\mu\nu}$$









#### **Direct Detection - Minimal Splitting**



#### **Direct Detection - Non minimal splitting**



n = 2

#### **Direct Detection - Non minimal splitting**

n = 2



n = 3

#### **Direct Detection - Non minimal splitting**

n = 2





n = 4

## Conclusions

- We computed the thermal mass of all perturbative WIMP candidates
- Real candidates can all be excluded by high exposure (> 200 ton x year)
   Xenon experiments like DARWIN
- Complex candidates with Y≠ 0 and minimal splitting can also be excluded by DARWIN, with the exception of n=2 and 5
- Future DD experiments can close most of the parameter space spanned by mass splittings
- Collider can close the parameter space for light multiplets, while ID for the heavier ones (future work)

## Thanks for the attention



## Real WIMPs

| DM spin          | EW n-plet | $M_{\chi}$ (TeV) | $(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$ | $\Lambda_{\rm Landau}/M_{\rm DM}$ | $\Lambda_{\rm UV}/M_{\rm DM}$ |
|------------------|-----------|------------------|---------------------------------------------------------|-----------------------------------|-------------------------------|
|                  | 3         | $2.53\pm0.01$    | -                                                       | $2.4 \times 10^{37}$              | $4 \times 10^{24} *$          |
| Real scalar      | 5         | $15.4\pm0.7$     | 0.002                                                   | $7 \times 10^{36}$                | $3\times 10^{24}$             |
|                  | 7         | $54.2\pm3.1$     | 0.022                                                   | $7.8 	imes 10^{16}$               | $2\times 10^{24}$             |
|                  | 9         | $117.8 \pm 15.4$ | 0.088                                                   | $3 \times 10^4$                   | $2 \times 10^{24}$            |
|                  | 11        | $199\pm42$       | 0.25                                                    | 62                                | $1 \times 10^{24}$            |
|                  | 13        | $338 \pm 102$    | 0.6                                                     | 7.2                               | $2\times 10^{24}$             |
| Majorana fermion | 3         | $2.86\pm0.01$    | _                                                       | $2.4\times10^{37}$                | $2 \times 10^{12} *$          |
|                  | 5         | $13.6\pm0.8$     | 0.003                                                   | $5.5 	imes 10^{17}$               | $3 \times 10^{12}$            |
|                  | 7         | $48.8\pm3.3$     | 0.019                                                   | $1.2 \times 10^4$                 | $1 \times 10^8$               |
|                  | 9         | $113\pm15$       | 0.07                                                    | 41                                | $1 \times 10^8$               |
|                  | 11        | $202\pm43$       | 0.2                                                     | 6                                 | $1 \times 10^8$               |
|                  | 13        | $324.6\pm94$     | 0.5                                                     | 2.6                               | $1 \times 10^8$               |

## Complex WIMPs Y=0

| DM spin        | $n_{\epsilon}$ | $M_{\rm DM}~({\rm TeV})$ | $\Lambda_{\rm Landau}/M_{\rm DM}$ | $(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$ |
|----------------|----------------|--------------------------|-----------------------------------|---------------------------------------------------------|
|                | 3              | $1.60\pm 0.01-2.4^*$     | $> M_{\rm Pl}$                    | -                                                       |
|                | 5              | $11.3\pm0.6$             | $> M_{\rm Pl}$                    | 0.003                                                   |
| Complex scalar | 7              | $47\pm3$                 | $2 \times 10^6$                   | 0.02                                                    |
| Complex scalar | 9              | $118\pm9$                | 110                               | 0.09                                                    |
|                | 11             | $217\pm17$               | 7                                 | 0.25                                                    |
|                | 13             | $352\pm30$               | 3                                 | 0.6                                                     |
|                | 3              | $2.0 \pm 0.1 - 2.4^*$    | $> M_{\rm Pl}$                    |                                                         |
|                | 5              | $9.1\pm0.5$              | $4 \times 10^6$                   | 0.002                                                   |
| Dirac fermion  | 7              | $45 \pm 3$               | 80                                | 0.02                                                    |
| Dirac lerinion | 9              | $115\pm9$                | 6                                 | 0.09                                                    |
|                | 11             | $211\pm16$               | 2.4                               | 0.3                                                     |
|                | 13             | $340\pm27$               | 1.6                               | 0.7                                                     |

| DM spin        | $n_Y$      | $M_{\rm DM}$ (TeV) | $\Lambda_{\rm Landau}/M_{\rm DM}$ | $(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$ | $\delta m_0  [{ m MeV}]$ | $\Lambda_{\rm UV}^{\rm max}/M_{\rm DM}$ | $\delta m_{Q_M}$ [MeV]                  |
|----------------|------------|--------------------|-----------------------------------|---------------------------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------|
| Dirac fermion  | $2_{1/2}$  | $1.08\pm0.02$      | $> M_{\rm Pl}$                    | <u>(</u>                                                | $0.22 - 2 \times 10^4$   | $10^{7}$                                | $4.8 - 10^4$                            |
|                | $3_1$      | $2.85\pm0.14$      | $> M_{\rm Pl}$                    |                                                         | 0.22 - 40                | 60                                      | $312 - 1.6 \times 10^4$                 |
|                | $4_{1/2}$  | $4.8 \pm 0.3$      | $\simeq M_{\rm Pl}$               | 0.001                                                   | $0.21 - 3 \times 10^4$   | $5 \times 10^{6}$                       | $20 - 1.9 \times 10^4$                  |
|                | $5_1$      | $9.9\pm0.7$        | $3 \times 10^{6}$                 | 0.003                                                   | 0.21 - 3                 | 25                                      | $10^3 - 2 \times 10^3$                  |
|                | $6_{1/2}$  | $31.8\pm5.2$       | $2 \times 10^4$                   | 0.01                                                    | $0.5 - 2 	imes 10^4$     | $4 \times 10^5$                         | $100 - 2 \times 10^4$                   |
|                | $8_{1/2}$  | $82\pm8$           | 15                                | 0.05                                                    | $0.84 - 10^4$            | $10^{5}$                                | $440 - 10^4$                            |
|                | $10_{1/2}$ | $158 \pm 12$       | 3                                 | 0.16                                                    | $1.2 - 8 \times 10^3$    | $6 \times 10^{4}$                       | $1.1 \times 10^3$ - 9 × 10 <sup>3</sup> |
|                | $12_{1/2}$ | $253\pm20$         | 2                                 | 0.45                                                    | $1.6 - 6 \times 10^{3}$  | $4 \times 10^4$                         | $2.3 \times 10^3$ - $7 \times 10^3$     |
| Complex scalar | $2_{1/2}$  | $0.58\pm0.01$      | $> M_{\rm Pl}$                    | <u> 14</u>                                              | $4.9 - 1.4 \times 10^4$  | -                                       | $4.2 - 7 \times 10^3$                   |
|                | $3_1$      | $2.1\pm0.1$        | $> M_{\rm Pl}$                    | -                                                       | 3.7 - 500                | 120                                     | 75 - $1.3 \times 10^4$                  |
|                | $4_{1/2}$  | $4.98\pm0.25$      | $> M_{\rm Pl}$                    | 0.001                                                   | $4.9 - 3 \times 10^4$    | _                                       | $17 - 2 \times 10^4$                    |
|                | $5_1$      | $11.5\pm0.8$       | $> M_{\rm Pl}$                    | 0.004                                                   | 3.7 - 10                 | 20                                      | $650 - 3 \times 10^3$                   |
|                | $6_{1/2}$  | $32.7\pm5.3$       | $\simeq 6 \times 10^{13}$         | 0.01                                                    | $4.9 - 8 \times 10^4$    | -                                       | $50$ - $5 	imes 10^4$                   |
|                | $8_{1/2}$  | $84\pm8$           | $2 \times 10^4$                   | 0.05                                                    | $4.9 - 6 \times 10^4$    | -                                       | $150 - 6 \times 10^4$                   |
|                | $10_{1/2}$ | $162 \pm 13$       | 20                                | 0.16                                                    | $4.9 - 4 \times 10^4$    | -                                       | $430 - 4 \times 10^4$                   |
|                | $12_{1/2}$ | $263\pm22$         | 4                                 | 0.4                                                     | $4.9 - 3 \times 10^4$    | -                                       | $10^3$ - $3 \times 10^4$                |

